Wednesday, April 05, 2006

Quantum Mechanics: Determinism at Planck Scale

Perhaps Quantum Gravity can be Handled by thoroughly reconsidering Quantum Mechanics itself?- Gerard t' Hooft

Albert Einstein used harmonic oscillators to understand specific heats of solids and found that energy levels are quantized. This formed one of the key bridges between classical and quantum mechanics.

Can harmonic oscillators serve as a bridge between quantum mechanics and special relativity?

It is nice Paul that you continue to bring perspective forward here for consideration.

I'll hope you will supply the paragraph one day that made the lights go on for you about what you are percieving, and from what you have understood having read Einstein's words in later life. Many tend to think Einstein was unproductive in his later life?

The basis of the paper you brought forward for inspection, is really quite significant, in my views. I'll tell you what I see and from this discussion, the ideas of what the Riemann's Hypothesis might mean in the expansion of cyclical processes we might have seen in the Ulam spiral perhaps?

You have been developing that perspective for a quite a while, as your numbers attest to this expression. So what are Poincare cycles? This I'll hold off for a bit, becuase I am returning to the earlier discussion wehad about what Zero actually means. Do you remember? Perhaps you could sum it up again from our consversationin the comment section.

You describe returning to the Laughlin and the foundational perspectives, for a better look. Type in "emergence" or "first principle" into the blog search feature, would be quite productive I think.

This is a good indicator to me that the route to describing the process although very difficult in ascertaing value in the "dissapation effect" of the virtual blackhole of Hooft, what value is this insight if it did not have a basis for which it could work?


One now may turn this observation around. A closed system that can only be in a finite number of different states, making transitions at discrete time intervals, would necessarily evolve back into itself after a certain amount of time, thus exhibiting what is called a Poincar´e cycle. If there were no information loss, these Poincar´e cycles would tend to become very long, with a periodicity that would increase exponentially with the size of the system. If there is information loss, for instance in the form of some dissipation effect, a system may eventually end up in Poincar´e cycles with much shorter periodicities. Indeed, time does not have to be discrete in that case, and the physical variables may form a continuum; there could be a finite set of stable orbits such that, regardless the initial configuration, any orbit is attracted towards one of these stable orbits; they are the limit cycles.

So Hooft is explaining this for us here? Only in a "positive" expression?

Before movng onthen soemthings would have had to been made clear as far as I can tell in regards to the basis of what zero actually means.

An Energy of Empty Space?

Einstein was the first person to realize that empty space is not nothingness. Space has amazing properties, many of which are just beginning to be understood. The first property of space that Einstein discovered is that more space can actually come into existence. Einstein's gravity theory makes a second prediction: "empty space" can have its own energy. This energy would not be diluted as space expands, because it is a property of space itself; as more space came into existence, more of this energy-of-space would come into existence as well. As a result, this form of energy would cause the universe to expand faster and faster as time passes. Unfortunately, no one understands why space should contain the observed amount of energy and not, say, much more or much less.

Once you get to th ebulk space it is extremely hard to explain how I gothere in my visual thinking but it is true that I see dynamcial spaces and all inlcusive views of the science of this original encapsulated in a geometrical process. Whether it's right or not is another question. I know this:)

While D brane analyisis had been given to another for perspective in relation to how we see Belenstein bound and the horizon of value, being describe by CFT, we know well then that the abstraction of D brane thinking has to answer to those microscopial visonistic qualites of a very dynamcial place?

That what has happen inside the blackhole, had something else as well to consider? Anomalies in perception then exist in how we see the quark Gluon plasma in relation to the principals of superfluids.

Why molasses and ice cream production might seem important to some, while others might dismiss the childest antics of the condense matter theorist?

So while these things are happening we should know that the condition elevated to bulk persepctive would have one see graviton production, as constituents of this bulk space. This derivation placed the bulk perspectve within grasp of what the harmonic oscillator means as we move our peceptions to the flat spacetime arrived at in the production of the quark Gluon plasma, that we are so boldly talking about here in views of the langrangian space.

I see in the WMAP perspective held to analogies of the sound in polarization modes as, nodes and anti-nodes and are really interesting when held to that perspective about what we might think of in relation to how we see particle physics having undergone a model change, as well as a perspective one as well.

This is a fifth dimensional view accomplished.


  • Quantum Harmonic Oscillator

  • Harmonic Oscillation

  • Warm Dark Matter

  • Big Bang Nucleosynthesis
  • No comments:

    Post a Comment