Tuesday, May 31, 2005

Coulomb Interactions, Thomson Scatterings

I think most people understand this stuff, and that experiment is the most efficient way of dealing with this issue. Even if we understand the matrix developemental view it's shortcoming are well expressed by others in that field of quantum grvaity. That could have easily helped orientate further constructive processes in that same respect.

John Ellis:
To my mind, one of the most plausible extensions of the Standard Model is supersymmetry (just look at the subjects of my research papers!), so could the minimal supersymmetric extension of the Standard Model have created the matter in the Universe?

John Ellis and the views about the supersymmetrical are really more in depth then the suttle words listed and spoken about by some. String Theorists knew how far this went?:)

Peter Woit said,
Certainly some people should be working on quantum gravity, especially if they are doing it in a non-overhyped way, trying to really seriously understand the technical issues involved. The LQG community appears to be doing this. But, personally, I don't have any ideas about how to start from thinking about quantum gravity and get to particle physics, whereas I do see some hope that if one better understands the structure of the standard model, one may be able to get to quantum gravity from there.
Posted by Peter Woit at May 30, 2005 05:22 PM

While some people are looking for consistant means of determinations, others apply "conceptual situations" and bring forth comprehension of a kind. Now to this degree, that "gluonic perception is being adjusted" to see these values. The Smolins and others understood well the limitation of these views? Are there any?

It becomes extremely difficult, as reductionistic processes are further detailed. So how far will this informtaion take us in terms of early universe understanding? Througha comsic interactive theme in the expeirments lead by situation in particle interaction in our atmosphere we can direct same particle interaction?

The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed.

What will glast do for this comprehension, understanding well the Calorimetric view of information given to us about those early universe situations?

Remember that the age is determined by the dark matter density. Mathematically, the length is roughly the geometric mean of the mean free path and the distance light can travel without obstruction (the horizon scale).

No comments:

Post a Comment