Once you see parts of the picture, belonging to the whole, then it becomes clear what a nice picture we will have?:) I used it originally for the question of the idea of a royal road to geometry, but have since progressed.

If you look dead center Plato reveals this one thing for us to consider, and to Aristotle, the question contained in the heading of this Blog.

It is beyond me sometimes to wonder how minds who are involved in the approaches of physics and mathematics might have never understood the world Gauss and Reimann revealled to us. The same imaging that moves such a mind for consideration, would have also seen how the dimensional values would have been very discriptive tool for understanding the dynamics at the quantum level?

As part of this process of comprehension for me, was trying to see this evolution of ordering of geometries and the topological integration we are lead too, in our apprehension of the dynamics of high energy considerations. If you follow Gr you understand the evolution too what became inclusive of the geometry developement, to know the physics must be further extended as a basis of our developing comprehension of the small and the large. It is such a easy deduction to understand that if you are facing energy problems in terms of what can be used in terms of our experimentation, that it must be moved to the cosmological pallette for determinations.

As much as we are lead to understand Gr and its cyclical rotation of Taylor and hulse, Mercuries orbits set our mind on how we shall perceive this quantum harmonic oscillator on such a grand scale,that such relevance between the quantum and cosmological world are really never to far apart?

As I have speculated in previous links and bringing to a fruitation, the methods of apprehension in euclidean determinations classically lead the mind into the further dynamcis brought into reality by saccheri was incorporated into Einsteins model of GR. Had Grossman not have shown Einstein of these geoemtrical tendencies would Einstein completed the comprehsive picture that we now see of what is signified as Gravity?

So lets assume then, that brane world is a very dynamcial understanding that hold many visual apparatus for consideration. For instance, how would three sphere might evolve from this?

Proper understanding of three sphere is essential in understanding how this would arise in what I understood of brane considerations.

**Spherical considerations to higher dimensions.**

Spheres can be generalized to higher dimensions. For any natural number n, an n-sphere is the set of points in n-dimensional Euclidean space which are at distance r from a fixed point of that space, where r is, as before, a positive real number.

a 1-sphere is a pair of points ( - r,r)

a 2-sphere is a circle of radius r

a 3-sphere is an ordinary sphere

a 4-sphere is a sphere in 4-dimensional Euclidean space

However, see the note above about the ambiguity of n-sphere.

Spheres for n ≥ 5 are sometimes called hyperspheres. The n-sphere of unit radius centred at the origin is denoted Sn and is often referred to as "the" n-sphere.

INtegration of geometry with topological consideration then would have found this continuance in how we percieve the road leading to topolgical considerations of this sphere. Thus we would find the definition of sphere extended to higher in dimensions and value in brane world considerations as thus:

In topology, an n-sphere is defined as the boundary of an (n+1)-ball; thus, it is homeomorphic to the Euclidean n-sphere described above under Geometry, but perhaps lacking its metric. It is denoted Sn and is an n-manifold. A sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere.

a 0-sphere is a pair of points with the discrete topology

a 1-sphere is a circle

a 2-sphere is an ordinary sphere

An n-sphere is an example of a compact n-manifold without boundary.

The Heine-Borel theorem is used in a short proof that an n-sphere is compact. The sphere is the inverse image of a one-point set under the continuous function ||x||. Therefore the sphere is closed. Sn is also bounded. Therefore it is compact.

Sometimes it is very hard not to imagine this sphere would have these closed strings that would issue from its poles and expand to its circumference, as in some poincare projection of a radius value seen in 1r. It is troubling to me that the exchange from energy to matter considerations would have seen this topological expression turn itself inside/out only after collapsing, that pre definition of expression would have found the evoltuion to this sphere necessary.

Escher's imaging is very interesting here. The tree structure of these strings going along the length of the cylinder would vary in the structure of its cosmic string length based on this energy determination of the KK tower. The imaging of this closed string is very powerful when seen in the context of how it moves along the length of that cylinder. Along the cosmic string.

To get to this

**point**:) and having shown a Platonic expression of simplices of the sphere, also integration of higher dimension values determined from a monte carlo effect determnation of quantum gravity. John Baez migh have been proud of such a model with such discrete functions?:) But how the heck would you determine the toplogical function of that sphere in higher dimensional vaues other then in nodal point flippings of energy concentration, revealled in that monte carlo model?

Topological consideration would need to be smooth, and without this structure how would you define such collpases in our universe, if you did not consider the blackhole?

So part of the developement here was to understand where I should go with the physics, to point out the evolving consideration in experimentation that would move our minds to consider how such supersymmetrical realities would have been realized in the models of the early universe understanding. How such views would have been revealled in our understanding within that cosmo?

One needed to be able to understand the scale feature of gravity from the very strong to the very weak in order to explain this developing concept of geometry and topological consideration no less then what Einstein did for us, we must do again in some comprehensive model of application.

## No comments:

## Post a Comment