Showing posts with label deduction. Show all posts
Showing posts with label deduction. Show all posts

Friday, June 26, 2015

Ambigous Perception

Ambiguous perception. A good example is bistable perception, which concerns alternating views of ambiguous figures, such as the Necker cube. Atmanspacher, Filk, and R€omer (2004) and Atmanspacher and Filk (2010) developed a detailed model describing a number of psychophysical features of bistable perception that have been experimentally demonstrated. In addition, Atmanspacher and Filk (2010, 2013) predicted that particular distinguished states in bistable perception may violate the temporal Bell inequalities—a litmus test for quantum behavior. Other research applying quantum theory to perception of ambiguous figures has been carried out by Conte et al. (2009).pg 9 -

The lines can change perspective and position.... as if the cube is protruding outward or inward(The orientation of the Necker cube can also be altered by shifting the observer's point of view. When seen from apparent above, one face tends to be seen closer; and in contrast, when seen from a subjective viewpoint that is below, a different face comes to the fore) as to describe it's geometric shape. Other examples here can be found(Rubin's vase -(These types of stimuli are both interesting and useful because they provide an excellent and intuitive demonstration of the figure–ground distinction the brain makes during visual perception.).

The Necker cube is used in epistemology (the study of knowledge) and provides a counter-attack against naïve realism. Naïve realism (also known as direct or common-sense realism) states that the way we perceive the world is the way the world actually is. The Necker cube seems to disprove this claim because we see one or the other of two cubes, but really, there is no cube there at all: only a two-dimensional drawing of twelve lines. We see something which is not really there, thus (allegedly) disproving naïve realism. This criticism of naïve realism supports representative realism. Necker cube -

Bold added to emphasize, direct and indirect realism- a dualism I believe occurs here, points toward the foundation, as Bohr looking at William James which lead to Heisenberg Uncertainty principal(Quantum Cognition and Bounded Rationality PG 27 to Pg 30)....and other assumptions.

There are no phenomenological experiments to suggest quantum cognition is real other then to see how the model works in relation too, questions and answers, or, to declare entanglement as a self evident state in my view.

The Necker cube is a paradigmatic example for bistable perception where pattern reversal obeys a particular probability distribution. Atmanspacher, Filk and Römer (2004) discussed this switching dynamics in terms of the quantum Zeno effect where “observation” (here attending to a percept) increases the dwell-time of an otherwise fast decaying unobserved state. Quantum Cognition, Bistable perception

Regarding consciousness then.

For example, subjects who stare continuously at a Necker cube usually report that they experience it "flipping" between two 3D configurations, even though the stimulus itself remains the same.[72] The objective is to understand the relationship between the conscious awareness of stimuli (as indicated by verbal report) and the effects the stimuli have on brain activity and behavior. In several paradigms, such as the technique of response priming,.[73] the behavior of subjects is clearly influenced by stimuli for which they report no awarenessConsciousness -

Awareness as irrationality shows then, that such information as to reaching our cognitive status as irrationality, can move to identify with a self evident position. This may help to show the process of inductive deductive relationship which leads to an over arching position as to being self evident. Aristotle, did not jettison Plato.

Wednesday, May 20, 2015

Are you a Platonist?

Kant, however, is correct in that we inevitably try and conceive of transcendent, which means unconditioned, objects. This generates "dialectical illusion" in the Antinomies of reason. Kant thought that some Antinomies could be resolved as "postulates of practical reason" (God, freedom, and immortality); but the arguments for the postulates are not very strong (except for freedom), and discarding them helps guard against the temptation of critics to interpret Kant in terms of a kind of Cartesian "transcendental realism" (i.e. real objects are "out there," but it is not clear how or that we know them). If phenomenal objects, as individuals, are real, then the abstract structure (fallibly) conceived by us within them is also real. Empirical realism for phenomenal objects means that an initial Kantian Conceputalism turn into a Realism for universals. See:
Meaning and the Problem of Universals, A Kant-Friesian Approach

It s always interesting for me to see what constitutes a Platonist in the world today. So I had to look at this question.  There always seems to be help when you need it most, so information in the truest sense,  is never lacking, but readily available as if taken from some construct we create of the transcendent.


Platonism, rendered as a proper noun, is the philosophy of Plato or the name of other philosophical systems considered closely derived from it. In narrower usage, platonism, rendered as a common noun (with a lower case 'p', subject to sentence case), refers to the philosophy that affirms the existence of abstract objects, which are asserted to "exist" in a "third realm" distinct both from the sensible external world and from the internal world of consciousness, and is the opposite of nominalism (with a lower case "n").[1] Lower case "platonists" need not accept any of the doctrines of Plato.[1]

In a narrower sense, the term might indicate the doctrine of Platonic realism. The central concept of Platonism, a distinction essential to the Theory of Forms, is the distinction between the reality which is perceptible but unintelligible, and the reality which is imperceptible but intelligible. The forms are typically described in dialogues such as the Phaedo, Symposium and Republic as transcendent, perfect archetypes, of which objects in the everyday world are imperfect copies. In the Republic the highest form is identified as the Form of the Good, the source of all other forms, which could be known by reason. In the Sophist, a later work, the forms being, sameness and difference are listed among the primordial "Great Kinds". In the 3rd century BC, Arcesilaus adopted skepticism, which became a central tenet of the school until 90 BC when Antiochus added Stoic elements, rejected skepticism, and began a period known as Middle Platonism. In the 3rd century AD, Plotinus added mystical elements, establishing Neoplatonism, in which the summit of existence was the One or the Good, the source of all things; in virtue and meditation the soul had the power to elevate itself to attain union with the One. Platonism had a profound effect on Western thought, and many Platonic notions were adopted by the Christian church which understood Plato's forms as God's thoughts, while Neoplatonism became a major influence on Christian mysticism, in the West through St Augustine, Doctor of the Catholic Church whose Christian writings were heavily influenced by Plotinus' Enneads,[2] and in turn were foundations for the whole of Western Christian thought


Now beauty, as we said, shone bright among those visions, and in this world below we apprehend it through the clearest of our senses, clear and resplendent. For sight is the keenest of the physical senses, though wisdom is not seen by it -- how passionate would be our desire for it, if such a clear image of wisdom were granted as would come through sight -- and the same is true of the other beloved objects; but beauty alone has this privilege, to be most clearly seen and most lovely of them all. [Phaedrus, 250D, after R. Hackford, Plato's Phaedrus, Library of the Liberal Arts, 1952, p. 93, and the Loeb Classical Library, Euthryphro Apology Crito Phaedo Phaedrus, Harvard University Press, 1914-1966, p.485, boldface added]

For example, thought cannot be attributed to the One because thought implies distinction between a thinker and an object of thought (again dyad). Even the self-contemplating intelligence (the noesis of the nous) must contain duality. "Once you have uttered 'The Good,' add no further thought: by any addition, and in proportion to that addition, you introduce a deficiency." [III.8.10] Plotinus denies sentience, self-awareness or any other action (ergon) to the One [V.6.6]. Rather, if we insist on describing it further, we must call the One a sheer Dynamis or potentiality without which nothing could exist. [III.8.10] As Plotinus explains in both places and elsewhere [e.g. V.6.3], it is impossible for the One to be Being or a self-aware Creator God. At [V.6.4], Plotinus compared the One to "light", the Divine Nous (first will towards Good) to the "Sun", and lastly the Soul to the "Moon" whose light is merely a "derivative conglomeration of light from the 'Sun'". The first light could exist without any celestial body. Plotinus -


"...underwriting the form languages of ever more domains of mathematics is a set of deep patterns which not only offer access to a kind of ideality that Plato claimed to see the universe as created with in the Timaeus; more than this, the realm of Platonic forms is itself subsumed in this new set of design elements-- and their most general instances are not the regular solids, but crystallographic reflection groups. You know, those things the non-professionals call . . . kaleidoscopes! * (In the next exciting episode, we'll see how Derrida claims mathematics is the key to freeing us from 'logocentrism'-- then ask him why, then, he jettisoned the deepest structures of mathematical patterning just to make his name...)

* H. S. M. Coxeter, Regular Polytopes (New York: Dover, 1973) is the great classic text by a great creative force in this beautiful area of geometry (A polytope is an n-dimensional analog of a polygon or polyhedron. Chapter V of this book is entitled 'The Kaleidoscope'....)"

So what is Coxeter saying in relation to Derrida? I think this is more the central issue. On the one hand images speak to what perception is capable of, beyond normal eyesight and without concepts,  reiterated in the nature of the discussion about animals. This is what animals lack, given they do not have this conceptual ability, just that they are able to deduct, was what I was looking for as that discussion emerged and evolved.

If there is a Platonic Ideal Form then there must be an ideal representation of such a form. According to logocentrism, this ideal representation is the logos.

Think of what the Good means again here that it cannot decay into anything else when it is recognized, and that any other wording degrades. If you can draw from experience then in a way one is able to understand this. I had mention an archetype as a medium toward which one could meet the good, and in that find that the archetype itself, contain in the good, allows this insight to be shared. The whole scene is the transmission of the idea, can become the ideal in life. This is an immediate realization of the form of the good. It needs no further the deepest levels you recognize it. You know, and you know it as a truth.

Understanding the foundations of Mathematics is important.

So I relay an instance where one is able to access the good.......also in having mentioned that abstraction can lead to the good. This distinction may have been settle in regard to the way in which Coxeter sees and Derrida sees, in regards to the word, or how Coxeter sees geometrically.

This is a crucial point in my view that such work could see the pattern in the form of the good. This is as to say, and has been said, that such freedom in realization is to know that the fifth postulate changed the course of geometrical understandings. This set the future for how such geometries would become significant in pushing not only Einstein forward, but all that had followed him, by what Grossman learned of Riemann. What Riemann learned from Gauss.

See: Prof. Dan Shechtman 2011 Nobel Prize Chemistry Interview with ATS


See Also:

Saturday, May 09, 2015

Before an Equation is Beautiful.....

 So we go after the essence of things in a logical way?

A question then that comes to mind is that if equations can become beautiful what were equations before? If taken in context of Aristotle, Objective deduction of information from induction, reveals the self evident principle?

The link to the following video will reveal this as a question about beauty, and without directing you to the answer, I want to see if you are quite capable of retrieving that answer.

Einstein was married to logic. But Einstein realized something, that helped him see "the before," as a necessary component in order to talk about "the nature of the equation?"

I am contending that when we think of Aristotle as we see science progress in the times, while further consider refinement in the Boolean perspective. But in essence,  one needs to be able to see in the Platonist way before one can move to the understanding of what beauty actually means.

....what was the equation?

Are you currently working towards a unified field theory?


So the beauty of the moment had to be clarified in certain terms, so as to be seen and understand that it could be seen.

Now beauty, as we said, shone bright among those visions, and in this world below we apprehend it through the clearest of our senses, clear and resplendent. For sight is the keenest of the physical senses, though wisdom is not seen by it -- how passionate would be our desire for it, if such a clear image of wisdom were granted as would come through sight -- and the same is true of the other beloved objects; but beauty alone has this privilege, to be most clearly seen and most lovely of them all. [Phaedrus, 250D, after R. Hackford, Plato's Phaedrus, Library of the Liberal Arts, 1952, p. 93, and the Loeb Classical Library, Euthryphro Apology Crito Phaedo Phaedrus, Harvard University Press, 1914-1966, p.485, boldface added]
Bold added for emphasis by me.

See Also:

Monday, February 16, 2015

Aristotle-The Square of Opposition (Whiteboard Animation)

Aristotle laid out the principles of his logic in his writing Περὶ Ἑρμηνείας, in Latin De Interpretatione, in English On Exposition. It is a graphical representation of the relations between propositions that guarantee their truth. If philosophers and scientists would internalise the logical rules in Aristotle's square of opposition, a lot of misunderstandings would be prevented. SEE: The Square of Opposition as a Whiteboard animation

 Basics of the Square of Opposition of Aristotle

0:06 A proposition (e.g. "All Greeks are men.") consists of a subject ("Greeks") and a predicate ("men").
The four types of propositions are:
Universal positive ("All Greeks are men.", abbreviated "aGM"),
Universal negative ("No Greeks are men.", abbreviated "nGM"),
Particular positive ("Some Greeks are men.", abbreviated "sGM") and
Particular negative ("Some Greeks are not men", abbreviated "sGnM").

1:38 Contradiction (Aristotle)

Universal positive and particular negative, as well as universal negative and particular positive are contradictory. They can't both be true and can't both be false at the same time.

1:59 Contraries (Aristotle)

Universal positive and Universal negative propositions are contraries. They can't both be true, but can both be false at the same time.

2:15 Subcontraries (Aristotle)

Particular positive and Particular negative propositions are subcontraries. They can't both be false, but can both be true at the same time.

2:35 Implication (Aristotle)

Implied propositions (particular positive and particular negative) are true, when their implying propositions (universal positive and universal negative) are true.

2:55 Counter Indication (Aristotle)

Universal propositions (positive and negative respectively) are false, when their particular propositions (positive and negative respectively) are false.

3:19 Converse propositions (Aristotle)

In converse propositions, subjects (e.g. Greeks) and predicates (e.g. men) can be switched without altering the proposition's truth.

Converse Propositions are:
"No Greeks are men" and
"Some Greeks are men".
so it is also true that
"No men are Greeks" as well as
"Some men are Greeks".

3:44 Complements (Aristotle)

A complement of a subject or predicate is everything that it is not.
E.g. "all that is not a man" and "all that is not a Greek".

3:58 Contrapositive propositions (Aristotle)

In contrapositive propositions ("all Greeks are men" and "some Greeks are not men"), if the subjects' and predicates' complements are switched, the proposition retains its truth.


See Also:

Friday, January 23, 2015

After Relativism

Watch more videos on


 "...underwriting the form languages of ever more domains of mathematics is a set of deep patterns which not only offer access to a kind of ideality that Plato claimed to see the universe as created with in the Timaeus; more than this, the realm of Platonic forms is itself subsumed in this new set of design elements-- and their most general instances are not the regular solids, but crystallographic reflection groups. You know, those things the non-professionals call . . . kaleidoscopes! * (In the next exciting episode, we'll see how Derrida claims mathematics is the key to freeing us from 'logocentrism'-- then ask him why, then, he jettisoned the deepest structures of mathematical patterning just to make his name...)

* H. S. M. Coxeter, Regular Polytopes (New York: Dover, 1973) is the great classic text by a great creative force in this beautiful area of geometry (A polytope is an n-dimensional analog of a polygon or polyhedron. Chapter V of this book is entitled 'The Kaleidoscope'....)"

See Also:

Monday, January 12, 2015

Rationalism vs Empiricism

The dispute between rationalism and empiricism concerns the extent to which we are dependent upon sense experience in our effort to gain knowledge. Rationalists claim that there are significant ways in which our concepts and knowledge are gained independently of sense experience. Empiricists claim that sense experience is the ultimate source of all our concepts and knowledge.

Rationalists generally develop their view in two ways. First, they argue that there are cases where the content of our concepts or knowledge outstrips the information that sense experience can provide. Second, they construct accounts of how reason in some form or other provides that additional information about the world. Empiricists present complementary lines of thought. First, they develop accounts of how experience provides the information that rationalists cite, insofar as we have it in the first place. (Empiricists will at times opt for skepticism as an alternative to rationalism: if experience cannot provide the concepts or knowledge the rationalists cite, then we don't have them.) Second, empiricists attack the rationalists' accounts of how reason is a source of concepts or knowledge. SEE: Markie, Peter, "Rationalism vs. Empiricism", The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta (ed.),

 Long before I had come to understand this nature of rationalism there were already signs that such a journey was already being awakened. This was an understanding for me as to the nature of what could be gained from the ability to visualize beyond empirical nature of our journey into the sensible realm.

I guess in a such an awakening,  as to what we know,  there is the realization that what comes after helps to make that sense. So in a way one might like to see how rationalism together with Empiricism actually works. It is not in the sense that I might define one group of historical thinkers to contrast each other to say that one should excel over another, but to define how such a rationally sound person moves toward empiricism to understand the reality we created by experimentation and repeatability that empiricism enshrouds.

So this awakening while slow to materialize, comes from understanding something about the logic of the world and the definitions and architecture of that logical approach. To me in this day and age it has lead to some theory about which computational view could hold the idea about how we might see this reality. I am reticence to view this  as a form of that reality. It is for what holds me back is a self evident moment using deducted features of our reasoning,  which could move us to that moment of clarity.

 The Empiricism Thesis: We have no source of knowledge in S or for the concepts we use in S other than sense experience Empircism -

 Empirical fact would not be the basis of reality for Nick Bostrum's simulation argument for instance. I hope to explain why.

 The basis of this association(Rationalist, or, a Empiricist) is whether one gains by a deductive method, or, an inductive method. A sense experience tells us, science as we know it, is inductive. We must garner repeatable experiments to verify reality, a rationalist, by logic and reason of theory alone. Verification, comes afterward. This for a rationalist is a deductive something which can be true, can be "innate" before we accept the inductive method means,  that is it can be rationally ascertained. It is only after ward that such a process could be said to be true or false.

If the late character of our sources may incite us to doubt the authenticity of this tradition, there remains that, in its spirit, it is in no way out of character, as can be seen by reading or rereading what Plato says about the sciences fit for the formation of philosophers in book VII of the Republic, and especially about geometry at Republic, VII, 526c8-527c11. We should only keep in mind that, for Plato, geometry, as well as all other mathematical sciences, is not an end in itself, but only a prerequisite meant to test and develop the power of abstraction in the student, that is, his ability to go beyond the level of sensible experience which keeps us within the "visible" realm, that of the material world, all the way to the pure intelligible. And geometry, as can be seen through the experiment with the slave boy in the Meno (Meno, 80d1-86d2), can also make us discover the existence of truths (that of a theorem of geometry such as, in the case of the Meno, the one about doubling a square) that may be said to be "transcendant" in that they don't depend upon what we may think about them, but have to be accepted by any reasonable being, which should lead us into wondering whether such transcendant truths might not exist as well in other areas, such as ethics and matters relating to men's ultimate happiness, whether we may be able to "demonstrate" them or not.See: Frequently Asked Questions about Plato by Bernard SUZANNE
When you examine deeply the very nature of your journey, then, you come to realize what is hidden underneath "experience." So while being an empiricist, it is necessary to know that such a joining with the rationalist correlates with the reasoned only after the mentioned experience. These are "corollary experiences," which serve to identify that which had been identified long before the sensible world had been made known.

Paradoxically, it was Einstein who reluctantly introduced the notion of spontaneous events, which might after all be the root of Bellʼs theorem. The lesson for the future could, however, be that we should build the notion of locality on the operationally clear 'no-signalling' condition—the impossibility of transferring information faster than light. After all, this is all that theory of relativity requires.

The moral of the story is that Bellʼs theorem, in all its forms, tells us not what quantum mechanics is, but what quantum mechanics is not.
Quantum non-locality—it ainʼt necessarily so... -

Empiricism then is to validate as a corollary that which had been cognate(maybe poor choice of word here but instead should use cognition). This does not mean you stop the process, but to extend the visionary possibility of that which can be cognitive....peering into the very nature of reality. Becomes the " we should build the notion of locality on the operationally clear 'no-signalling' condition."

Here the question of entanglement raises it's head to ask what is really being trasmitted as the corrallary of information,  as a direct physical connection in a computational system. In a quantum gravity scheme what is exchanged as a spin 2 graviton we might examine in the corollary of this no signalling condition but as a direct understanding of gravitational signalling.?

Such an examination reveals the Innate process with which we may already know "some thing,"  is awakened by moving into the world of science. While we consider such computational reality in context of a ontological question,  then,  such a journey may be represented as the geometry of the being which reveals a deeper question about the make-up of that reality.

Affective Field Theory of Emotion regarding sensory development may aid in the journey for understanding the place with which "the idea/form in expression arises," and that which is reasoned, beyond the related abstractions of "such a beginning," by becoming the ideal, in the empiricist world.

Tuesday, April 15, 2014

Freewill under Scrutiny

Photo courtesy of the Department of Rare Books and Special Collections, Princeton University Library.

In contrast I seek to awaken a fair and good interpretation of the "I AM" as the intellect and, and about our choices.  How we make them, and how we can be mindful of them. So here in lies my understanding that, one's intellect must be in charge to refer to the one as sitting in a position not egotistically centered, but the ego in the "I am," egotistically centered.:) It can be Illusive as to pinpoint "the center." So God then,  is Symmetry, and Symmetry has been broken?

BEHOLDING beauty with the eye of the mind, he will be enabled to bring forth, not images of beauty, but realities, for he has hold not of an image but of a reality, and bringing forth and nourishing true virtue to become the friend of God and be immortal, if mortal man may. Would that be an ignoble life? PLATO

It is never easy to understand the full scope of the question of,  by belief alone. So I sought here to try and give this Free Will some foundation.

Whether a particular thing happens, says Aristotle, may depend on a series of causes that
"goes back to some starting-point, which does not go back to something else. This, therefore, will be the starting-point of the fortuitous, and nothing else is the cause of its generation." Metaphysics Book VI 1027b12-14) See: The Cogito Model

The direct action,  according to my understanding is that one has "gained from experience."  So experience, is in a way "a value system" which I may use in order to understand those choices,  as well as,  to use that "information" to make decisions. In this way, I have set the causal affect for the future as to a determination with which causal chains must be linked back too, this original position??

  Pierre Curie (1894): “Asymmetry is what creates a phenomenon.”

So with a place in mind, as the intellect, we see what transpires as we "project into the future." So then, as to set the course of action dependent upon, the theory behind the ability of Free Will. This becomes a determinant feature in the link as a causal that is no longer left too, happen stance.

I suspect that will, qualia, meaning and intentionality will turn out to be understood to be aspects of nature. But I suspect that by the time we have achieved this our understanding of nature will be quite different. That is, I suspect that we will only succeed in reducing minds to atoms when we have revolutionized our understanding of atoms in some way presently inconceivable.

I only have an intuition about the first step in this process, which is to bring time and the present moment-the now-into science and make it central to physics and prior to law. By embracing presentism and the openness of the future we radically recast the context for understanding what it means for anything-rock or atom or mind-to be part of nature. Lee Smolin

If we trace back this idea of Indeterminacy, what do we find? And how shall we find such an exchange as getting to the heart of the problem as to say, " it is quite wrong to try founding a theory on observable magnitudes alone. " Einstein goes on to say that it is the theory that decides what it is that we can observe.
"Possibly I did use this kind of reasoning," Einstein admitted, "but it is nonsense all the same. Perhaps I could put it more diplomatically by saying that it may be heuristically useful to keep in mind what one has actually observed. But on principle, it is quite wrong to try founding a theory on observable magnitudes alone. In reality the very opposite happens. It is the theory which decides what we can observe. You must appreciate that observation is a very complicated process. The phenomenon under observation produces certain events in our measuring apparatus. As a result, further processes take place in the apparatus, which eventually and by complicated paths produce sense impressions and help us to fix the effects in our consciousness. Along this whole path - from the phenomenon to its fixation in our consciousness — we must be able to tell how nature functions, must know the natural laws at least in practical terms, before we can claim to have observed anything at all. Only theory, that is, knowledge of natural laws, enables us to deduce the underlying phenomena from our sense impressions. When we claim that we can observe something new, we ought really to be saying that, although we are about to formulate new natural laws that do not agree with the old ones, we nevertheless assume that the existing laws — covering the whole path from the phenomenon to our consciousness—function in such a way that we can rely upon them and hence speak of'observations'...Physics and Beyond (pg67)
(bold added by me for emphasis)

In truest sensibility of the individual then is to seek some relation as to what by nature allows such observance in consciousness, so as to be able too, make decisions. Then, as too, "covering the whole path from the phenomenon to our consciousness—function in such a way that we can rely upon them and hence speak of 'observations'. " Any new theory then has to have had a foundation(causal chains) with which it can move forward and built upon that experience. While I truly speak to the process of science so as to demonstrate Einstein's wording and ways,  I am also speaking to the consciousness that uses this same information.

Friday, February 07, 2014

Unus Mundus-One World

Unus mundus, Latin for "one world", is the concept of an underlying unified reality from which everything emerges and to which everything returns.

The idea was popularized in the 20th century by the Swiss psychoanalyst Carl Jung, though the term can be traced back to scholastics such as Duns Scotus[1] and was taken up again in the 16th century by Gerhard Dorn, a student of the famous alchemist Paracelsus.

The striving  for me was to dig deeper into our very natures.  It always the quest to understand the  patterns that reside in us. The very idea for me was that in  this quest to unify,  the objective world(matter) with the world that resides in a center place. To me that place was the source from which all things manifest.

 Jung, in conjunction with the physicist Wolfgang Pauli, explored the possibility that his concepts of the archetype and synchronicity might be related to the unus mundus - the archetype being an expression of unus mundus; synchronicity, or "meaningful coincidence", being made possible by the fact that both the observer and connected phenomenon ultimately stem from the same source, the unus mundus.[2]

So while there was this objective striving to see how such formations emerged as materiality of such expression,  was a final construct that existed in that external world. For me this was something no one could quite explain to me, yet,  as I moved forward  I began to find such correlates as to others who tried to map that expression.

 It was this psychoid aspect of the archetype that so impressed Nobel laureate physicist Wolfgang Pauli. Embracing Jung's concept, Pauli believed that the archetype provided a link between physical events and the mind of the scientist who studied them. In doing so he echoed the position adopted by German astronomer Johannes Kepler. Thus the archetypes which ordered our perceptions and ideas are themselves the product of an objective order which transcends both the human mind and the external world.[2]

This as the idea emerged,  I looked for what emergence might mean, as an example of a beginning,  and the subsequent model that may emerge from that source. This then became know as the "arche,"  and the tendency to form"(type)" as a movement forward in the solidifying of that expression. This was a matter bound expression, fully recognizing the need for a spiritual recognition of this opposition as a struggle in with consciousness to seek balance with materiality. Polarity,  as the world of the real.

One of Duchamp's close friends Man Ray (1890–1976) was also one of Duchamp's collaborators. His photograph 'Dust Breeding' (Duchamp's Large Glass with Dust Notes) from 1920 is a document of The Large Glass after it had collected a year's worth of dust while Duchamp was in New York. See:
Dust Breeding (Man Ray 1920)

Such histrionically values were tied to such expressions to have found that the inner world and the outer-world were extremely connected. The observance not seen until it was understood that this psychology was topological interpreting itself from an inductive/deductive stance,  as to the question, and with regard to the nature of the question.

 Jung interpreted the practice of alchemy as the symbolic projection of psychic processes. In Psychology and Alchemy and Mysterium Coniunctionis (1955/56), Jung’s empirical exploration and rediscovery of the objective psyche led him to recognise that the basis of the alchemist’s endeavour was the archetypal union of opposites by means of the integration of opposing polarities: conscious and unconscious, reason and instinct, spiritual and material, masculine and feminine. In the last summaries of his insights on the subject, influenced in part by his collaboration with the Nobel Prize winning physicist Wolfgang Pauli, the old Jung envisions a great psycho-physical mystery to which the old alchemists gave the name of unus mundus (one world). At the root of all being, so he intimates, there is a state wherein physicality and spirituality meet. See:Reflections On Duchamp, Quantum Physics, And Mysterium Coniunctionis

This would place myself in the position of questioning this causal nature to have said that "will" was deeply connected to our psyche,  to have not understood this deeper perception of a reality connection. Also,  that such unification was deeper embedded in this practice of unification,  so as to strive to form,  as a example of an idea into expression.

Betrayal of Images" by Rene Magritte. 1929 painting on which is written "This is not a Pipe"

This alchemy valuation of that work toward expression was based on a fundamental reality of joining the objectified world with the nature of the source. This forming process,  the constructs,  as a fundamental structure of the reality given.


See Also:

Thursday, February 06, 2014

The Arche, is a Fundamental Point of View?

The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used.

One may find a correlate here with regard to how a question can be properly placed. Lets say, as a result of a inductive/deductive approach this puts one in a position of being truly like the fisherman/woman, looking for fish. However, one might look at that terminology, this might be an insightful way of recognizing a fundamental feature of always gong to the "edge of something?" Dropping a line into the deepest waters of.....?
To wit, it’s the concept of “being directed toward a goal.” In the good old days of Aristotle, our best understanding of the world was teleological from start to finish: acorns existed in order to grow into mighty oak trees; heavy objects wanted to fall and light objects to rise; human beings strove to fulfill their capacity as rational beings. Not everyone agreed, including my buddy Lucretius, but at the time it was a perfectly sensible view of the world.Reality, Pushed From Behind
So you may throw coins to the winds and ask the winds, "which way is it going to blow today," yet, there is an underlying fundamental feature associated with this question? It is an improved version of an ole method, that seeks to be explained in the fundamental of approach given today.

To Plato it may be this "One Thing," while to Aristotle, a hand sweeping as to indicate as to say  it is all around you?

So given the truth of what a seeker will find, its correlate, may surprise you.

Sunday, August 25, 2013

True North

What is your true north? What does your bird look like? If you find that you are confused on whether you are sensing the voice of intuition or the voice of ego, skip to 5 min 40 secs to get clarity on which it is. That is....if you want to skip the peacock story at the beginning. Ha! Enjoy.

  "The power of settings, the power of priming, and the power of unconscious thinking, all of those are a major change in psychology. I can't think of a bigger change in my lifetime. You were asking what's exciting? That's exciting, to me."


See Also:

Thursday, June 20, 2013

Olay to Divine Inspiration

I think one needs to draw a distinction here with regard to what consciousness is able to access, given the understanding that information already exists. That becoming aware of it, as part and parcel of something larger then in the conscious state access versus the unconscious ability and doorway too.

Anyway, I presented the Dialogues of Plato and the Plays of William Shakespeare as forums in which characters real or imagined, help to move forward the reader under "ideological progressions," as if,  dealing with this inductive/ deductive realization of information and probable outcomes once given the scenarios which are displayed for the mind to entertain Understanding our Angels and Daemons

While one gets to the point of what is self evident, and lays the point or question as a point of gaining access to that information, how does one see this conscious intent, as it gains access to levels of perception becoming fully aware of "other entities(Gateway Program)," versus, access to information in terms of the collective unconscious? Everything is information, and information, is not lost.

   Elizabeth Gilbert muses on the impossible things we expect from artists and geniuses -- and shares the radical idea that, instead of the rare person "being" a genius, all of us "have" a genius. It's a funny, personal and surprisingly moving talk.

    The author of Eat, Pray, Love, Elizabeth Gilbert has thought long and hard about some large topics. Her next fascination: genius, and how we ruin it.Elizabeth Gilbert on nurturing creativity

The question arises in my mind with regard to seeing these entities as being apart from oneself(Daemon) not Demon:) and gaining access to the same information exhibited in recognition of this higher intelligence that already exists in us all?? Are you aware of the content of "deep play?"

    The words daemon, dæmon, are Latinized spellings of the Greek δαίμων (daimôn),[1] used purposely today to distinguish the daemons of Ancient Greek religion, good or malevolent "supernatural beings between mortals and gods, such as inferior divinities and ghosts of dead heroes" (see Plato's Symposium), from the Judeo-Christian usage demon, a malignant spirit that can seduce, afflict, or possess humans See:Daemon (mythology)

I try to elaborate more here. So it was more that we loose something of ourselves when we see the nature of "an entity" as something apart from ourselves as we consciously push the boundaries of information access. I give two examples with regard too, Robert Pirsig and John Nash. More the fear then,  that such genius is associated with illness and that with this creative spark, and assumed so?

This understanding is a foundational perspective that Socrates may have shared as he intently listened to people. He was looking for this ability of people to access and use this aspect of them self. To express aspect of this higher intelligence? Historically then, the understanding and development of the Socratic foundations? Here my view may be skewed by what is mythical as Gilbert portrays of Socratic as to "a being" inside of us, while I intend to show a development of knowledge pursue.

So herein lies the difficulties I am facing with regard to TC.

Saturday, June 15, 2013

Tacit Knowledge

Tacit knowledge (as opposed to formal, codified or explicit knowledge) is the kind of knowledge that is difficult to transfer to another person by means of writing it down or verbalizing it. For example, stating to someone that London is in the United Kingdom is a piece of explicit knowledge that can be written down, transmitted, and understood by a recipient. However, the ability to speak a language, use algebra,[1] or design and use complex equipment requires all sorts of knowledge that is not always known explicitly, even by expert practitioners, and which is difficult or impossible to explicitly transfer to other users.
While tacit knowledge appears to be simple, it has far reaching consequences and is not widely understood.



The term “tacit knowing” or “tacit knowledge” was first introduced into philosophy by Michael Polanyi in 1958 in his magnum opus Personal Knowledge. He famously introduces the idea in his later work The Tacit Dimension with the assertion that “we can know more than we can tell.”.[2] According to him, not only is the knowledge that cannot be adequately articulated by verbal means, but also all knowledge is rooted in tacit knowledge in the strong sense of that term.
With tacit knowledge, people are not often aware of the knowledge they possess or how it can be valuable to others. Effective transfer of tacit knowledge generally requires extensive personal contact, regular interaction [3] and trust. This kind of knowledge can only be revealed through practice in a particular context and transmitted through social networks.[4] To some extent it is "captured" when the knowledge holder joins a network or a community of practice.[5]
Some examples of daily activities and tacit knowledge are: riding a bike, playing the piano, driving a car, and hitting a nail with a hammer.[6]
The formal knowledge of how to ride a bicycle is that in order to balance, if the bike falls to the left, one steers to the left. To turn right the rider first steers to the left, and then when the bike falls right, the rider steers to the right.[7] You may know explicitly how turning of the handle bars or steering wheel change the direction of a bike or car, but you cannot simultaneously focus on this and at the same time orientate yourself in traffic.
Similarly, you may know explicitly how to hold the handle of a hammer, but you cannot simultaneously focus on the handle and hit the nail correctly with the hammer. The master pianist can perform brilliantly, but if he begins to concentrate on the movements of his fingers instead of the music, he will not be able to play as a master. Knowing the explicit knowledge, however, is no help in riding a bicycle, doesn’t help in performing well in the tasks since few people are aware of it when performing and few riders are in fact aware of this.
Tacit knowledge is not easily shared. Although it is that which is used by all people, it is not necessarily able to be easily articulated. It consists of beliefs, ideals, values, schemata and mental models which are deeply ingrained in us and which we often take for granted. While difficult to articulate, this cognitive dimension of tacit knowledge shapes the way we perceive the world.
In the field of knowledge management, the concept of tacit knowledge refers to a knowledge possessed only by an individual and difficult to communicate to others via words and symbols. Therefore, an individual can acquire tacit knowledge without language. Apprentices, for example, work with their mentors and learn craftsmanship not through language but by observation, imitation, and practice.
The key to acquiring tacit knowledge is experience. Without some form of shared experience, it is extremely difficult for people to share each other's thinking processes[8]
Tacit knowledge has been described as “know-how” - as opposed to “know-what” (facts), “know-why” (science), or “know-who” (networking)[citation needed]. It involves learning and skill but not in a way that can be written down. On this account knowing-how or embodied knowledge is characteristic of the expert, who acts, makes judgments, and so forth without explicitly reflecting on the principles or rules involved. The expert works without having a theory of his or her work; he or she just performs skillfully without deliberation or focused attention [9]
Tacit knowledge vs. Explicit knowledge:[10] Although it is possible to distinguish conceptually between explicit and tacit knowledge, they are not separate and discrete in practice. The interaction between these two modes of knowing is vital for the creation of new knowledge.[11]

Differences with explicit knowledge

Tacit knowledge can be distinguished from explicit knowledge in three major areas:
  • Codifiability and mechanism of transferring knowledge: while explicit knowledge can be codified, and easily transferred without the knowing subject, tacit knowledge is intuitive and unarticulated knowledge cannot be communicated, understood or used without the ‘knowing subject’. Unlike the transfer of explicit knowledge, the transfer of tacit knowledge requires close interaction and the buildup of shared understanding and trust among them.
  • Main methods for the acquisition and accumulation: Explicit knowledge can be generated through logical deduction and acquired through practical experience in the relevant context. In contrast, tacit knowledge can only be acquired through practical experience in the relevant context.
  • Potential of aggregation and modes of appropriation: Explicit knowledge can be aggregated at a single location, stored in objective forms and appropriated without the participation of the knowing subject. Tacit knowledge in contrast, is personal contextual. It is distributive, and cannot easily be aggregated. The realization of its full potential requires the close involvement and cooperation of the knowing subject.
The process of transforming tacit knowledge into explicit or specifiable knowledge is known as codification, articulation, or specification. The tacit aspects of knowledge are those that cannot be codified, but can only be transmitted via training or gained through personal experience.

Transmission models for tacit knowledge

A chief practice of technological development is the codification of tacit knowledge into explicit programmed operations so that processes previously requiring skilled employees can be automated for greater efficiency and consistency at lower cost. Such codification involves mechanically replicating the performance of persons who possess relevant tacit knowledge; in doing so, however, the ability of the skilled practitioner to innovate and adapt to unforeseen circumstances based on the tacit "feel" of the situation is often lost. The technical remedy is to attempt to substitute brute-force methods capitalizing on the computing power of a system, such as those that enable a supercomputer programmed to "play" chess against a grandmaster whose tacit knowledge of the game is broad and deep.
The conflicts demonstrated in the previous two paragraphs are reflected in Ikujiro Nonaka's model of organizational knowledge creation, in which he proposes that tacit knowledge can be converted to explicit knowledge. In that model tacit knowledge is presented variously as uncodifiable ("tacit aspects of knowledge are those that cannot be codified") and codifiable ("transforming tacit knowledge into explicit knowledge is known as codification"). This ambiguity is common in the knowledge management literature.
Nonaka's view may be contrasted with Polanyi's original view of "tacit knowing." Polanyi believed that while declarative knowledge may be needed for acquiring skills, it is unnecessary for using those skills once the novice becomes an expert. And indeed, it does seem to be the case that, as Polanyi argued, when we acquire a skill we acquire a corresponding understanding that defies articulation [12]


  • One of the most convincing examples of tacit knowledge is facial recognition. ‘‘We know a person’s face, and can recognize it among a thousand, indeed a million. Yet we usually cannot tell how we recognize a face we know, so most of this cannot be put into words.’’. When you see a face you are not conscious about your knowledge of the individual features (eye, nose, mouth), but you see and recognize the face as a whole [13]
  • Another example of tacit knowledge is the notion of language itself—it is not possible to learn a language just by being taught the rules of grammar—a native speaker picks it up at a young age almost entirely unaware of the formal grammar which they may be taught later. Other examples are how to ride a bike, how tight to make a bandage, or knowing whether a senior surgeon feels an intern may be ready to learn the intricacies of surgery; this can only be learned through personal experimentation.
  • Collins showed [14] that a particular laser (The ppTEA laser) was designed in America and the idea, with specific assistance from the designers, was gradually propagated to various other universities world-wide. However, in the early days, even when specific instructions were sent, other labs failed to replicate the laser, it only being made to work in each case following a visit to or from the originating lab or very close contact and dialogue. It became clear that while the originators could clearly make the laser work, they did not know exactly what it was that they were doing to make it work, and so could not articulate or specify it by means of monologue articles and specifications. But a cooperative process of dialogue enabled the tacit knowledge to be transferred.
  • Another example is the Bessemer steel process — Bessemer sold a patent for his advanced steel making process and was sued by the purchasers who couldn't get it to work. In the end Bessemer set up his own steel company because he knew how to do it, even though he could not convey it to his patent users. Bessemer's company became one of the largest in the world and changed the face of steel making.[15]
  • As apprentices learn the craft of their masters through observation, imitation, and practice, so do employees of a firm learn new skills through on-the-job training. When Matsushita started developing its automatic home bread-making machine in 1985, an early problem was how to mechanize the dough-kneading process, a process that takes a master baker years of practice to perfect. To learn this tacit knowledge, a member of the software development team, Ikuko Tanaka, decided to volunteer herself as an apprentice to the head baker of the Osaka International Hotel, who was reputed to produce the area’s best bread. After a period of imitation and practice, one day she observed that the baker was not only stretching but also twisting the dough in a particular fashion (“twisting stretch”), which turned out to be the secret for making tasty bread. The Matsushita home bakery team drew together eleven members from completely different specializations and cultures: product planning, mechanical engineering, control systems, and software development. The “twisting stretch” motion was finally materialized in a prototype after a year of iterative experimentation by the engineers and team members working closely together, combining their explicit knowledge. For example, the engineers added ribs to the inside of the dough case in order to hold the dough better as it is being churned. Another team member suggested a method (later patented) to add yeast at a later stage in the process, thereby preventing the yeast from over-fermenting in high temperatures.[16]

Knowledge management

According to Parsaye, there are three major approaches to the capture of tacit knowledge from groups and individuals. They are:[17]
  • Interviewing experts.
  • Learning by being told.
  • Learning by observation.
Interviewing experts can be done in the form of structured interviewing or by recording organizational stories. Structured interviewing of experts in a particular subject is the most commonly used technique to capture pertinent, tacit knowledge. An example of a structured interview would be an exit interview. Learning by being told can be done by interviewing or by task analysis. Either way, an expert teaches the novice the processes of a task. Task analysis is the process of determining the actual task or policy by breaking it down and analyzing what needs to be done to complete the task. Learning by observation can be done by presenting the expert with a sample problem, scenario, or case study and then observing the process used to solve the problem.[citation needed]
Some other techniques for capturing tacit knowledge are:[citation needed][original research?]
All of these approaches should be recorded in order to transfer the tacit knowledge into reusable explicit knowledge.
Professor Ikujiro Nonaka has proposed the SECI (Socialization, Externalization, Combination, Internalization) model, one of the most widely cited theories in knowledge management, to present the spiraling knowledge processes of interaction between explicit knowledge and tacit knowledge (Nonaka & Takeuchi 1995).

See also


  1. ^ Collins, H.M. "Tacit Knowledge, Trust and the Q of Sapphire" Social Studies of Science' p. 71-85 31(1) 2001.
  2. ^ Polanyi, Michael (1966), The Tacit Dimension, University of Chicago Press: Chicago, 4.
  3. ^ Goffin, K. & Koners, U. (2011). Tacit Knowledge, Lessons Learnt, and New Product Development. J PROD INNOV MANAG, 28, 300-318.
  4. ^ Schmidt, F. L., & Hunter, J. E. (1993). Tacit knowledge, practical intelligence, general mental ability, and job knowledge. Current Directions in Psychological Science, 2, 8-9.
  5. ^ Goffin, K. & Koners, U. (2011). Tacit Knowledge, Lessons Learnt, and New Product Development. J PROD INNOV MANAG, 28, 300-318.
  6. ^ Engel, P. J. H. (2008). Tacit knowledge and Visual Expertise in Medical Diagnostic Reasoning: Implications for medical education. Medical Teacher, 30, e184-e188. DOI: 10.1080/01421590802144260.
  7. ^
  8. ^ Lam, A. (2000). Tacit Knowledge, Organizational Learning and Societal Institutions: An Integrated Framework. Organization Studies 21(3), 487-513.
  9. ^ Schmidt, F. L., & Hunter, J. E. (1993). Tacit knowledge, practical intelligence, general mental ability, and job knowledge. Current Directions in Psychological Science, 2, 8-9.
  10. ^ Lam, A. (2000). Tacit Knowledge, Organizational Learning and Societal Institutions: An Integrated Framework. Organization Studies 21(3), 487-51.
  11. ^ Angioni, G., Fare, dire, sentire: l'identico e il diverso nelle culture, Il Maestrale, 2011, 26-99
  12. ^ Schmidt, F. L., & Hunter, J. E. (1993). Tacit knowledge, practical intelligence, general mental ability, and job knowledge. Current Directions in Psychological Science, 2, 8-9.
  13. ^ Lam, A. (2000). Tacit Knowledge, Organizational Learning and Societal Institutions: An Integrated Framework. Organization Studies 21(3), 487-513.
  14. ^ Collins, H.M. "Tacit Knowledge, Trust and the Q of Sapphire" Social Studies of Science' p. 71-85 31(1) 2001
  15. ^ J.E. Gordon, "The new science of strong materials", Penguin books.
  16. ^ Nonaka, Ikujiro; Takeuchi, Hirotaka (1995), The knowledge creating company: how Japanese companies create the dynamics of innovation, New York: Oxford University Press, pp. 284, ISBN 978-0-19-509269-1.
  17. ^ Parsaye, Kamran; Chignell, Mark (1988), Expert systems for experts, Hoboken, NJ: Wiley, p. 365, ISBN 978-0-471-60175-3

Further reading

  • Angioni G., Doing, Thinkink, Saying, in Sanga & Ortalli (eds.) , Nature Knowledge, Berghahm Books, New York-Oxford 2004, 249-261.
  • Angioni, G., Fare, dire, sentire: l'identico e il diverso nelle culture, Il Maestrale, 2011, 26-99
  • Bao, Y.; Zhao, S. (2004), "MICRO Contracting for Tacit Knowledge - A Study of Contractual Arrangements in International Technology Transfer", in Problems and Perspectives of Management, 2, 279- 303.
  • Brohm, R. Bringing Polanyi onto the theatre stage: a study on Polanyi applied to Knowledge Management, in: Proceedings of the ISMICK Conference, Erasmus University, Rotterdam, The Netherlands, 1999, pp. 57–69.
  • Brohm, R. (2005), Polycentric Order in Organizations, Erasmus University Rotterdam: Published dissertation ERIM, hdl:1765/6911
  • Collins, H.M. "Tacit Knowledge, Trust and the Q of Sapphire" Social Studies of Science' p. 71-85 31(1) 2001
  • Dalkir, Kimiz (2005) "Knowledge Management in Theory and Practice" pp. 82–90
  • Gladwell, Malcolm 2005. Blink: the power of thinking without thinking. Little, Brown: New York.
  • Gourlay, Stephen, "An Activity Centered Framework for Knowledge Management". In Claire Regina McInerney, Ronald E. Day (2007). Rethinking knowledge management. Springer. ISBN 3-540-71010-8.
  • Nonaka, Ikujiro; Takeuchi, Hirotaka (1995), The knowledge creating company: how Japanese companies create the dynamics of innovation, New York: Oxford University Press, p. 284, ISBN 978-0-19-509269-1
  • Patriotta, G. (2004). Studying organizational knowledge. Knowledge Management Research and Practice, 2(1).
  • Ploszajski, P.; Saquet, A.; Segalla, M. Le savoir tacite dans un contexte culturel (z: ), Les Echos, Le Quotidien de L’Economie, 18 Novembre 2004, Paris 2004
  • Polanyi, Michael. "The Tacit Dimension". First published Doubleday & Co, 1966. Reprinted Peter Smith, Gloucester, Mass, 1983. Chapter 1: "Tacit Knowing".
  • Reber, Arthur S. 1993. Implicit learning and tacit knowledge: an essay on the corgnitive unconscious. Oxford University Press. ISBN 0-19-510658-X
  • Sanders, A. F. (1988). Michael Polanyi's post critical epistemology, a reconstruction of some aspects of 'tacit knowing'. Amsterdam: Rodopi.
  • Smith, M. K. (2003) 'Michael Polanyi and tacit knowledge', the encyclopedia of informal education,© 2003 Mark K. Smith
  • Tsoukas, H. (2003) ‘Do we really understand tacit knowledge?’ in The Blackwell handbook of organizational learning and knowledge management. Easterby-Smith and Lyles (eds), 411-427. Cambridge, MA: Blackwell Publishing.
  • Erik Cambria and Amir Hussain: Sentic Computing: Techniques, Tools, and Applications. Dordrecht, Netherlands: Springer, ISBN: 978-94-007-5069-2, 2012
  • Wenger E. Communities of practice: learning, meaning and identity, Cambridge University Press, New York 1998.
  • Wilson, Timothy D. 2002. Strangers to ourselves: discovering the adaptive unconscious. Harvard University Press, Cambridge MA. 0-674-01382-4

External links