Showing posts with label Witten. Show all posts
Showing posts with label Witten. Show all posts

Sunday, March 25, 2007

Heralded from the 21st Century: String Theory

I know not how, may find their way to the minds of humanity in Some Dimensionality, and may stir up a race of rebels who shall refuse to be confined to limited Dimensionality." from Flatland, by E. A. Abbott


It is sometimes important to know what race of rebels had been raised to realize that such a revolution in the making had started from a place of thinking that many others
began to think about as well?

Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in an 1897 painting by Paul Gauguin: D'ou venons-nous? Que sommes-nous? Ou allons-nous? "Where do we come from? What are we? Where are we going?"
See here for more information.

It is important to know where such models began to influence the idea to generate theoretical model for an apprehension of how we view this universe? Given the study at hand here are the following people for consideration.

Whence began this journey and revolution?

LEONARD SUSSKIND:

And I fiddled with it, I monkeyed with it. I sat in my attic, I think for two months on and off. But the first thing I could see in it, it was describing some kind of particles which had internal structure which could vibrate, which could do things, which wasn't just a point particle. And I began to realize that what was being described here was a string, an elastic string, like a rubber band, or like a rubber band cut in half. And this rubber band could not only stretch and contract, but wiggle. And marvel of marvels, it exactly agreed with this formula.
I was pretty sure at that time that I was the only one in the world who knew this.


So we have to take stock of the movements that change democratic societies. To have found such governments will change and fall according to the plight of it's citizens in science. As it goes with "theoretical positions?"

Working to understand the development of the model in consideration was needed in order for one to understand why Lee Smolin methodology to work science from a historical perspective is one I favour as well. It is sometimes necessary to list these developmental phases in order to get to a position to speak with authority. Find that "with certainty" we can make certain comments? Find, we must be confronted again, to say, any progress will go from There.

The Revolution that Didn't Happen by Steven Weinberg

I first read Thomas Kuhn's famous book The Structure of Scientific Revolutions a quarter-century ago, soon after the publication of the second edition. I had known Kuhn only slightly when we had been together on the faculty at Berkeley in the early 1960s, but I came to like and admire him later, when he came to MIT. His book I found exciting.

Evidently others felt the same. Structure has had a wider influence than any other book on the history of science. Soon after Kuhn's death in 1996, the sociologist Clifford Geertz remarked that Kuhn's book had "opened the door to the eruption of the sociology of knowledge" into the study of the sciences. Kuhn's ideas have been invoked again and again in the recent conflict over the relation of science and culture known as the science wars.


So we know where the idea of science wars began do we not? What instigates conflict as a healthy perspective to progress of the sciences. We will see the story unfold within this blog.

For some reason people might of thought my views were just held to Lee Smolin and the work that I had been accumulating with regards to his views of the Universe. While I had shown the cover of his book countless times, I would like to say that I have accumulated "other books," like those of Brian Greene as well.

Does this make me an expert on the subject in question or what ever Lee Smolin has written? Of course not.

But the work I have been doing, has not been limited to what the authors themself have given to the public in their outreach writing books. I have been at this a few years now, so I would like people to think this is not just a jaunt of journalism, that has been given to the public in it's books but has been a labour of love to understand my place in the universe.

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (ISBN 0-375-70811-1) is a book by Brian Greene published in 2000 which introduces string theory and provides a comprehensive though non-technical assessment of the theory and some of its shortcomings.

Beginning with a brief consideration of classical physics, which concentrates on the major conflicts in physics, Greene establishes an historical context for string theory as a necessary means of integrating the probabilistic world of the standard model of particle physics and the deterministic Newtonian physics of the macroscopic world. Greene discusses the essential problem facing modern physics: unification of Einstein's theory of General Relativity and Quantum Mechanics. Greene suggests that string theory is the solution to these two conflicting approaches. Greene uses frequent analogies and mental experiments to provide a means for the layman to come to terms with the theory which has the potential to create a unified theory of physics.

The Elegant Universe was adapted for a three hour program in two parts for television broadcast in late 2003 on the PBS series NOVA.


Thanks Q9 for the link to "Elegant physicist makes string theory sexy." I was going to posted it the day when you gave it to me, but instead seeing that Clifford of Asymptotia had it (same day), I thought I wouldn't. But as fate has it I must.

The Fabric of the Cosmos: Space, Time, and the Texture of Reality (2004) is the second book on theoretical physics, cosmology and string theory written by Brian Greene, professor and co-director of Columbia's Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP).[1]
Greene begins with the key question: What is reality? Or more specifically: What is spacetime? He sets out to describe the features he finds both exciting and essential to forming a full picture of the reality painted by modern science. In almost every chapter, Greene introduces its basic concepts and then slowly builds to a climax, which is usually a scientific breakthrough. Greene then attempts to connect with his reader by posing simple analogies to help explain the meaning of a scientific concept without oversimplifying the theory behind it.

In the preface, Greene acknowledges that some parts of the book are controversial among scientists. Greene discusses the leading viewpoints in the main text, and points of contention in the end notes. Greene has striven for balanced treatment of the controversial topics. In the end notes, the diligent reader will find more complete explanations relevant to points he has simplified in the main text.


Once you get this view of the gravitational connection between everything, the form of graviton, you get this preview of the bulk and what lensing may mean. It is hard not to think of "dimensional perspectives in relation to the energy" describing the particles of science in some way. Witten below in his "Strings Unravel" lets you know what string theory has accomplished.

Warped Passages is a book by Lisa Randall, published in 2005, about particle physics in general and additional dimensions of space (cf. Kaluza-Klein theory) in particular. The book has made it to top 50 at amazon.com, making it the world's first successful book on theoretical physics by a female author. See Where are my keys?

It's alway nice having one's own blog and nice that I can retained my dignity under the name of Plato. It keeps my personal life from being treated with disrespect at the whim of the stroke of a delete key. Of course I am willing to take my lumps understanding such a role as "older student." After being expose to the exchange between people in the tribe, it's thinking can do all kinds of damage to each other? But I would like to think that all sides remain cool to positions they hold in society

A Different Universe: Reinventing Physics from the Bottom Down by Robert B. LaughlinFrom the Publisher:
Why everything we think about fundamental physical laws needs to change, and why the greatest mysteries of physics are not at the ends of the universe but as close as the nearest ice cube or grain of salt.

Not since Richard Feynman has a Nobel Prize-winning physicist written with as much panache as Robert Laughlin does in this revelatory and essential book. Laughlin proposes nothing less than a new way of understanding fundamental laws of science. In this age of superstring theories and Big-Bang cosmology, we're used to thinking of the unknown as being impossibly distant from our everyday lives. The edges of science, we're told, lie in the first nanofraction of a second of the Universe's existence, or else in realms so small that they can't be glimpsed even by the most sophisticated experimental techniques. But we haven't reached the end of science, Laughlin argues-only the end of reductionist thinking. If we consider the world of emergent properties instead, suddenly the deepest mysteries are as close as the nearest ice cube or grain of salt. And he goes farther: the most fundamental laws of physics-such as Newton's laws of motion and quantum mechanics -are in fact emergent. They are properties of large assemblages of matter, and when their exactness is examined too closely, it vanishes into nothing.
See Laughlin, Reductionism, Emergence

Out of all this uncertainty that exists at the level with which we think about in "those dimensions" what value any constructive diagram if it did not lead you to the understanding of the building blocks that a condense matter theorist may describe as manifesting in our reality?

The Year is 2020 and that's our Eyesight

Columbia physicist Brian Greene inhabits a multiple-perspective landscape modeled after M.C. Escher's artwork in a scene from "The Elegant Universe," a public-TV documentary based on Greene's book.
Q: Hawking has said that there could be a “theory of everything” produced in the next 20 years, or by 2020. Do you get that same sense? Or will there ever be a theory of everything?

A: Well, I always find it difficult to make predictions that are tied to a specific time frame, because as we all know, one of the exciting things about science is that you don’t know when the big break is going to happen. It could happen tomorrow, it could happen 10 years from now, it could happen a century from now. So you just keep pressing on, making progress, and hope that you reach these major milestones — ideally in your own lifetime, but who knows? So I don’t know if 2020 is the right number to say. But I would say that string theory has a chance of being that unified theory, and we are learning more and more about it. Every day, every week, every month there are fantastically interesting developments.

Will it all come together by 2020, where we can actually have experimental proof and the theory develops to the point that it really makes definitive statements that can be tested? I don’t know. I hope so. But hope is not the thing that determines what will actually happen. It’s the hard work of scientists around the world.


But anyway onto what I wanted to say and "being censored" I couldn't.

Clifford is defending his position on how Lee Smolin and Peter Woit have assigned a "perspective view" to string theory as a modelled approach. As a theoretical discovery of science, Clifford from my view, had to show that this process is still unfolding and that any quick decision as to giving String theory such a final vote of opinion from Lee Smolin was premature. I have supported Clifford in this view because of where we had been historically in the past years that the formulation of string theory has been given.

D-Branes by Clifford V. Johnson
D-branes represent a key theoretical tool in the understanding of strongly coupled superstring theory and M-theory. They have led to many striking discoveries, including the precise microphysics underlying the thermodynamic behaviour of certain black holes, and remarkable holographic dualities between large-N gauge theories and gravity. This book provides a self-contained introduction to the technology of D-branes, presenting the recent developments and ideas in a pedagogical manner. It is suitable for use as a textbook in graduate courses on modern string theory and theoretical particle physics, and will also be an indispensable reference for seasoned practitioners. The introductory material is developed by first starting with the main features of string theory needed to get rapidly to grips with D-branes, uncovering further aspects while actually working with D-branes. Many advanced applications are covered, with discussions of open problems which could form the basis for new avenues of research.


While Clifford's book I do not have, I understand that the "second revolution" was necessary to help us move to consider where string theory was to take us. It was progressing in the theoretics as a model to help us see science assuming the ways in which such models adjust us to possible new views in science. Clifford may not of liked the implication of a Grokking of a kind that would refer to consuming model approaches and then becoming what you eat?

Clifford:
I’ve found that different people have different takes on what it means to have a “theory of everything”. There is a popular idea (perhaps the most common) that this somehow means that this theory will describe (at least in principle) all known basic physical phenomena (constituents and their interactions, if you like) once and for all. Others mean something less ambitious, a theory that consistently describes the four fundamental forces and the things that interact with them, achieving a unification of all the forces and phenomena that we currently understand. I personally think that the first idea of a theory of everything is rather naive, and my personal hunch (and bias from what I’ve learned about the history of science) is that there is simply no such thing.


So of course entertaining the idea of a "theory of everything" leaves a bad taste in some peoples mouth, and having them to reason that it is the naivity of such a thought, that I immediately felt insulted. Clifford saids,"this theory will describe (at least in principle) all known basic physical phenomena (constituents and their interactions, if you like) once and for all" and may have been the case for those less then spending the time and effort, would have probably been insulted as I was. I of course came to recognize the positive aspect of the second position Clifford assumes.

Bench Marks of theoretical Progress

Anyway there are positions that we can take when we look back and reassess everything that we have been doing in reading the public outreach, like so called "bench marks" to see if such progressions still have have a evolutionary way to go.

Edward Witten-Reflections on the Fate of Spacetime

Unravelling String Theory

But what is string theory? It may well be the only way to reconcile gravity and quantum mechanics, but what is the core idea behind it? Einstein understood the central concepts of general relativity years before he developed the detailed equations. By contrast, string theory has been discovered in bits and pieces — over a period that has stretched for nearly four decades — without anyone really understanding what is behind it. As a result, every bit that is unearthed comes as a surprise. We still don’t know where all these ideas are coming from — or heading to



See more here



So what shall we use to measure what had first seem so abstract in Susskind's mind as a "rubber band," or the start of Veneziano views on such strings at inception? We've come a long way.

Something that I perceived back in 2004 help to "shape my views on the way I speak" "today" allows for us to consider that strings take it's rightful place within the building blocks of matter, that following Robert Laughlins lead, it was that we shifted our times from the first three seconds of Steven Weinberg, to the "First three Microseconds" of strings within the process of the unfolding universe.

The resulting collisions between pairs of these atomic nuclei generate exceedingly hot, dense bursts of matter and energy to simulate what happened during the first few microseconds of the big bang. These brief "mini bangs" give physicists a ringside seat on some of the earliest moments of creation.
See How Particles Came to be?

While Laughlin may have not seen the continued relevance of particle reductionism it was leading to some amazing insights. I now wonder now, if held to the comparisons of this superfluid, how it would have appealed to him? I think Witten in last plate above recognized what had to be done.

Wednesday, March 14, 2007

IN Search of Mandelstam's Holy Grail



There are two posts that reflect the purpose of this post today. One is Clifford's linked through Lee Smolin's comment and the other, at Backreaction. Good Physics is Conflict

A lot of you may never understand the significance of the mystery that follows the thinking of the Holy Grail. Yet is it more the knowledge that can be gained from all soul's day, that on this occasion we may have called it Halloween.

We celebrated the past, in the living of today? You philosophize, while you become the thoughts of models created by science leaders shared? I do not think any have a "personality disorder" like I do:)

Lee Smolin:
Here is an example of the kind of question I found I needed a book to explore: what to think of the problems that arise from the need for higher dimensions in string theory, such as the problem of moduli stabilization and the vast number of static solutions. To approach this I read books on the early history of GR and unified field theories and learned that higher dimensional compactifications were explored many times between 1914 and 1984 and that close to the beginning these problems were appreciated and discussed by Einstein and others. I weave this story into my book because I find it useful when trying to judge how serious the present issues in string theory are to know how Einstein and many others struggled with the same issues over decades.


So of course when we think of the persons of science who walked before us (shoulders of giants), what are their whole stories, but what is evidenced to us as we read those words? So you compile your data accordingly, and from it, we say at certain spots, how are we to react to the challenge now facing us?



Stanley Mandelstam, Professor Emeritus, Particle Theory

My present research concerns the problem of topology changing in string theory. It is currently believed that one has to sum over all string backgrounds and all topologies in doing the functional integral. I suspect that certain singular string backgrounds may be equivalent to topology changes, and that it is consequently only necessary to sum over string backgrounds. As a start I am investigating topology changes in two-dimensional target spaces. I am also interested in Seiberg-Witten invariants. Although much has been learned, some basic questions remain, and I hope to be able at least to understand the simpler of these questionsStanley Mandelstam-Professor Emeritus Particle Theory


As a lay person watching the debate it is difficult for me to discern the basis of these arguments. But I strive to go past what you think is surface in conduct in science's response, as some may show of themself in a reactionary pose. Should we all be so perfect, that the human condition is not also the example by which we shall progress in science?

Dealing in the Abstract



A sphere with three handles (and three holes), i.e., a genus-3 torus.

Of course the thinking may seem so detached from reality that one asks for some reason with which to believe anything. It required, that the history of this approached dust off models in glass cabinets, that were our early descendants of the museum today.

Sylvester's models lay hidden away for a long time, but recently the Mathematical Institute received a donation to rescue some of them. Four of these were carefully restored by Catherine Kimber of the Ashmolean Museum and now sit in an illuminated glass cabinet in the Institute Common Room.




How many of you know how to work in such abstract spaces, and know that what you are talking about has it's relationships in the physics of today? Or that, what satellites we use in measure of, have some correlation to how one may have seen "UV coordinates supplied by Gauss?"

Saturday, December 02, 2006

Finiteness of String Theory and Mandelstam



It might be that the laws change absolutely with time; that gravity for instance varies with time and that this inverse square law has a strength which depends on how long it is since the beginning of time. In other words, it's possible that in the future we'll have more understanding of everything and physics may be completed by some kind of statement of how things started which are external to the laws of physics. Richard Feynman



I was lead into this subject of Quantum Gravity, by Lee Smolin's book called, "Three Roads to Quantum Gravity." As a lay person reading what our scientist's have to say, I have a vested interest in what can start one off and find, that changes are being made to the synopsis first written. Did I understand his position correctly from the very beginning? I'll have to go back over my notes.

But with this format now I have the opportunity to...ahem... get it..directly from the horses mouth(no disrespect intended and written based on knowing how to read horses). As I said, I tried early on to see how the situation of string theory could be refuted. I "instigated" as a comparative front for Lubos Motl and Peter Woit to speak from each of their positions. I had to disregard "the tones" set by either, as to the nature of whose what and how ignorant one might be, and comparatively, one might be to intelligent design? To get "some evidence" of why string theory might not be such a good idea?

Now I believe this is a more "civil situation" that such a format has been proposed and that Lee Smolin can speak directly. As well as, "further information" supplied to counter arguments to Lee's position.


A sphere with three handles (and three holes), i.e., a genus-3 torus.


Jacques Distler :
This is false. The proof of finiteness, to all orders, is in quite solid shape. Explicit formulæ are currently known only up to 3-loop order, and the methods used to write down those formulæ clearly don’t generalize beyond 3 loops.

What’s certainly not clear (since you asked a very technical question, you will forgive me if my response is rather technical) is that, beyond 3 loops, the superstring measure over supermoduli space can be “pushed forward” to a measure over the moduli space of ordinary Riemann surfaces. It was a nontrivial (and, to many of us, somewhat surprising) result of d’Hoker and Phong that this does hold true at genus-2 and -3.


Just a reminder about my skills. While I do things like carpetry, plumbing, electrical, I do not call myself a Carpenter, a Plumber or a Electrician. Nor shall I ah-spire to be more then I'm not, as I am to old this time around.

Greg Kuperberg:
The string theorists are physicists and this is their intuition. Do you want physical intuition or not?

Okay, Smolin is also a physicist and his intuition is radically different from that of the strings theorists. So who is right?


Yet, least I not read these things, can I not decipher "the jest" while it not being to technical? Shall I call it a Physicists intuition or I will only call my intuition what it is?

Jacques Distler:
When most people (at least, most quantum field theorists) use the term “finiteness,” they are referring to UV finiteness.


While the things above talked about from Jacques are served by hindsight, "the jest" follows what comes after this point.

The Jest of the Problem?

My present research concerns the problem of topology changing in string theory. It is currently believed that one has to sum over all string backgrounds and all topologies in doing the functional integral. I suspect that certain singular string backgrounds may be equivalent to topology changes, and that it is consequently only necessary to sum over string backgrounds. As a start I am investigating topology changes in two-dimensional target spaces. I am also interested in Seiberg-Witten invariants. Although much has been learned, some basic questions remain, and I hope to be able at least to understand the simpler of these questionsStanley Mandelstam-Professor Emeritus Particle Theory


Gina has asked questions in context of "academic excellence" in relation to what is being seen in relation to string theory. Of course we thank Clifford for providing the format for that discussion.

The Trouble With Physics,” by Lee Smolin, Index page 382, Mandelstam, Stanley, and string theory finiteness, pages 117,187, 278-79, 280, 281, 367n14,15

For reference above.

Gina:
I raised 16 points that I felt Lee’s arguments were not correct or problematic. This is an academic discussion and not a public criticism, and I truly think that such critique can be useful, even if I am wrong on all the 16 points.

Three of my 16 points were on more technical issues, but I feel that I can understand Lee’s logical argument even without understanding the precise technical nature of “finiteness of string theory” (I do have a vague impression of what it is.) I think that my interpretation of this issue is reasonable and my critique stands.


I find this interesting based on what information has been selected to counter the arguments that Lee Smolin used to support his contentions about what is being defined in string theory.


Stanley Mandelstam Professor Emeritus Research: Particle Physics
My research concerns string theory. At present I am interested in finding an explicit expression for the n-loop superstring amplitude and proving that it is finite. My field of research is particle theory, more specifically string theory. I am also interested in the recent results of Seiberg and Witten in supersymmetric field theories.


So of course, here, I am drawn to the content of his book and what is the basis of his argument from those four pages. I hope my explanation so far summarizes adequately. For the lay person, this information is leading perspective as to the basis of the argument.

Lee Smolin:
Perturbative finiteness is a major element of the claim of string theory as a potential theory of nature. If it is not true then the case for string theory being a theory of nature would not be very strong.

-Perturbative finiteness has not been proven. There is evidence for it, but that evidence is partial. There is a complete proof only to genus two, which is the second non-trivial term in an infinite power series, each term of which has to be finite. The obstacles to a complete proof are technical and formidable; otherwise we would certainly have either a proof or a counterexample by now. There is some progress in an alternative formulation, which has not yet been shown to be equivalent to the standard definition of string theory.

-This is not an issue of theoretical physicists rigor vrs mathematical rigor. There is no proof at either level. There is an intuitive argument, but that is far from persuasive as the issue is what happens at the boundaries of super-moduli space where the assumption of that argument breaks down. In the formulation in which there is a genus two result it is not clear if there is an unambiguous definition of the higher order terms.

Is string theory in fact perturbatively finite? Many experts think so. I worry that if there were a clear way to a proof it would have been found and published, so I find it difficult to have a strong expectation, either way, on this issue.


It should be known here and here that all along I have been reacting to Lee Smolin's new book. The title itself should have given this away?

The explanation of scientific development in terms of paradigms was not only novel but radical too, insofar as it gives a naturalistic explanation of belief-change. Thomas Kuhn


So of course knowing the basis of my thought development is a "good idea" as the links show what spending our dollars can do, having bought what our good scientist Lee Smolin has written.

There is a little "tit for tat" going on right now, but I think the point has been made sufficiently clear as to where Gina's thoughts in regards to the points on Finiteness is being made beyond 2?

In these lectures, recent progress on multiloop superstring perturbation theory is reviewed. A construction from first principles is given for an unambiguous and slice-independent two-loop superstring measure on moduli space for even spin structure. A consistent choice of moduli, invariant under local worldsheet supersymmetry is made in terms of the super-period matrix. A variety of subtle new contributions arising from a careful gauge fixing procedure are taken into account.


Yes I think I have to wait now to see if the discussion can now move beyond the first three points raised? Hopefully Lee will respond soon?

How do you fight sociology

Because this by any of the leaders of string theory. it was left to someone like me, as a quasi "insider" who had the technical knowledge but not the sociological commitment, to take on that responsibility. And I had done so because of my own interest in string theory, which I was working on almost exclusively at the time. Nevertheless, some string theorists regarded the review as a hostile act.

The trouble with Physics, by Lee Smolin, Page 281


I have discovered one of Lee Smolin's objection to a string theorist. They are only craftsman, and not seers.

Tuesday, November 07, 2006

Quantum Computation and Evolution?

We used to think that if we knew one, we knew two, because one and one are two. We are finding out that we must learn a great deal more about 'and'."- Sir Arthur Eddington (1882-1944)


Of course a lot of this post has to do with the post created by Sean Carroll over at Cosmic Variance.

Sean Carroll:
Nobody would just be sitting around in their armchair, thinking deep thoughts about the nature of spacetime, and say “Hey, maybe if we look at quantum gravity with anti-de Sitter boundary conditions, it will be dual to a large-N conformal field theory in Minkowski space.” You had to be led there, bit by bit, by struggling to understand the individual puzzles presented by different pieces of the theory along the way. And it paid off big-time.




What he said caught my attention because I had been thinking of so many things piece meal, that when I realized the beauty extracted from the chaos, I couldn't help see things working on a sociological level as well. Sure, we can be arm chair philosophers, with systemic approaches that are computational in disquise, that at first glance would seem....um.....crackpotish?


Deep in the interior of a red giant star, hydrogen rich clouds (red) are seen to float above the hydrogen burning shell (blue)

Click here for high resolution image.>

It seems such insight gained from all the articles I have read, that have been shared with me, have amounted to nothing? Here I am, sitting in the pottism of my own...er I mean, "others" illusions which I continue to perpetuate?:)

What can be said about journalism is that within it's stories the substance of scientific thought is being generated/not generated?

Despite the universe's tendency towards disarray (like the socks in your drawer), there is a surprising amount of spontaneous order in the universe: stars clump into galaxies, atoms combine to form organized crystals, ants work together in a colony, species interact with each other and the physical environment to form ecosystems, cells build the different parts of a person, and neurons coordinate their firing to produce thought. When thousands of components get together in just the right way, something remarkable happens—they fall into recognizable, persistent patterns in space or in time. We live in a universe in which interactions among the basic building blocks of matter, or among individuals in our societies, give rise to unpredicted and unexpected emergent behavior. This occurs for many different types of things, large and small, living and inanimate.

Emergence is the study of how order arises from chaos, of how the interactions of simple objects with each other and their environment give rise to highly complex and often surprising behaviors.

Synchrony pervades the living world: some types of fireflies will flash in unison, the cacophony of crickets converges to a unified chirping, and populations of locusts swarm every 17 years. More sophisticated synchrony is found in the life cycle of an ant colony. Individual ants react robotically to chemical signals left by their neighbors during their short life span, while the colony as a whole lives, matures, and dies as a single organism that outlives any of its constituent, crawling parts.


While the wording of emergence is being entertained here it's applicability is far reaching. While being governed by the statement of Witten, it is not without understanding that the world and universe we have gone through in "computation evolutionary changes" allow us to see the dynamics of the universe in unique ways. It has to be mathematically consistent, or computationally it does not work out?

  • 1. Quantum Matter (atoms in a crystal, electrons in a superconductor)

  • 2. Soft Matter (the stacking and flow of ball bearings)

  • 3. Living Things
    (ant colonies, evolution, neural networks)

  • 4. Social and Economic Behavior (cities, traffic, economies)





  • So in the instance I shared in terms of the neutrinos and the "value of the sun" in contemplation, such pictures of nature while very detailed microscopically in perspective, are still quite beautiful over all to look at.


    The ribosome is a living factory, the essential element within cells that creates proteins by decoding each protein type's specific recipe that is stored within messenger RNA. Ribosomes are a fundamental model for future nano-machines, producing the protein building blocks of all living tissue. Credit: Los Alamos National Laboratory
    Researchers at Los Alamos National Laboratory have set a new world's record by performing the first million-atom computer simulation in biology. Using the "Q Machine" supercomputer, Los Alamos computer scientists have created a molecular simulation of the cell's protein-making structure, the ribosome. The project, simulating 2.64 million atoms in motion, is more than six times larger than any biological simulations performed to date. Today, the effort is featured in a paper in the Proceedings of the National Academy of Sciences.


    While all these ideas of photons "dancing in my head" I couldn't help but think of, "I" Robot.

    I, Robot:
    signs of new life emerge as images photonically flicker in the new logic forming apparatus
    I had a dream....

    Saturday, October 14, 2006

    "Lead by Physics," Faces the "Trouble With Physics"


    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars



    Well I have to deal with first things first here. This article above correlates the one given by Stefan. This is not to contest what you are saying, just to show you the informtaion I myself had gone through to arrive at the conclusions I do.

    Ion-Smashing Yields New Knowledge, But Some Still Question Risk
    By Carolyn Weaver

    Seen from above, the Relativistic Heavy Ion Collider, or RHIC, at New York’s Brookhaven National Laboratory, looks like a racetrack. And it is a kind of race track: two “beam pipes” in a tunnel nearly four kilometers around, in which gold nuclei are accelerated to close to the speed of light, and are crashed into each other at intersecting points along the way. Out of the kinetic energy of those collisions, new matter is created for a brief instant: a shower of quarks and gluons, the smallest particles known – and at seven trillion degrees, hotter than anything now in the universe.



    Brookhaven physicist Peter Steinberg
    “It’s basically a living embodiment of E=mc squared,” says Brookhaven physicist Peter Steinberg. “Einstein’s theory told us a hundred years ago that you can trade off energy for mass, and vice versa. We’re essentially converting the kinetic energy, the energy from the motion of these nuclei, converting it into lots of particles.”

    The four detectors that bestride the collision points are massive machines, with “time projection chambers” that record the collisions and their after-moments. The latest results made big news last year when Brookhaven physicists reported that the quark-gluon plasma was not a gas as expected, but rather a very dense liquid.


    You say strangelets do not exist? And that no connection has been found between string theory, and strangelets. I have to then argue my case so you see it in light of what the reductionistic physics is actually doing, while string theory and it's energy values hover overhead of all these interactions. How th epaticle inclination must also include microstate blackhole creation.

    So bear with me if you can.


    Hi Plato,

    strange matter and strangelets are a very interesting topic, but, unfortunately, there has been no experimental evidence for them so far. They are not really connected to string theory either, besides the fact that it was an early paper of Witten that resuscitated interest in them with nuclear physicists, I think.

    Strangelets have been thought of as possible culprits for RHIC disaster scenarios (besides the ubiquitous black holes ;-), and as responsible for potential cosmic ray particles beyond the GZK cutoff.

    But as far as I know, there has been no experimental verification of any of these ideas (and the world still exists: RHIC has produced no greedy strangelets which would have eaten up the Earth).

    In the case of the potential quark star you cite, RX J185635-375, again, and unfortunately, as far as I remember, it came out that the radius determination was not completely safe. Bottomline was that this star could be well understood as a common neutron star. I am not completely sure, though, about the current status of this object, whether it is thought to be a quark star or not.

    Anyway, it is a good example for an exciting observation which is reported in the press, but which has to be partially revisd later - only that these revisions don't make in the press releases. I guess it would often be quite interesting to have a kind of follow-up reporting, where one could read what is, eventually, the fate of some discovery that has been announced in the press.

    The strange particles I was talking about are not strangelets, but the common hadrons with strangeness, especially the Ξs and the Ωs, with two and three strange quarks, respectively. These are the particles that I had mentioned in my earlier post, and whereof I should finish the second part, finally ;-). You typically find much more of these particles in nucleus-nucleus collisions than in (properly scaled) nucleon-nucleus collisions, which is a strong indication for an intermediate QGP state, where stange-antistrang quark pairs can easily be produced.

    Best, stefan



    One, as we know can make wide sweeping generalization about the physics and why is it that any position taken by any scientist would not have been one that becomes the point of departure for all scientists? An example her ei the rationship to the Heavy Ion collsions an dstringtheory and by this very nature to the strangelets as postulated.

    This article below is to correlate with the article you showed me of 2004, while I had made this ocnlusion myself early in 2006, lets not forget the number of people involved in the "ghost particle, and Pauli" through out the years and what we have seen theoretically of the strangelets as they had been related to the disaster scenario as consequential microstate blackholes created in the RHIC and LHC.

    Is this too drastic a scenario to have you think about what all these “particles in press” are saying about the science, that any one scientist themselves might be following to correct? You say, "just get it right?" Well there are many within the blogs who are writers for those articles? Why do you think they are amongst you?

    I had noticed the grouping and conversations between blogs that had been developing over the last year and half. I continue to see some of the same people. Some, that constantly referred to the reporting that goes on. So I had to address this or forever be banished to the realm of reporting as someone just profiled.

    Strangelet Search at RHIC by STAR Collaboration

    Three models of strangelet production in high-energy heavy-ion collisions have been proposed in the 1980s and 1990s: coalescence [10], thermal statistical production [11], and distillation from a Quark Gluon Plasma (QGP) [12, 13]. The first two models usually predict low strangelet production cross sections at mid-rapidity, as verified by measurements of the related processes of coalescence of nucleons into nuclei [14]. If a QGP is created in heavy ion collisions, it could cool down by distillation (kaon emission) and condense to strange-quark-rich matter in its ground state – a strangelet. However, this requires a net baryon excess and a non-explosive process in the collisions [12, 15]. Neither of these conditions is
    favored at mid-rapidity in ultra-high energy heavy ion collisions, as suggested by results from the Relativistic Heavy Ion Collider (RHIC) at BNL [16]. Recently a new mechanism for strangelet


    I want you to have a good look at the number of names listed in this Pdf file as well the universities involve.

    Clifford of Asymptotia made this point clear about the vast network of scientists even within the string theory network of people and about who knows whom? Can you possibly know everyone, or, like the paper whose citations are referred to more as we refer to any particular scientist? We then come to see the make up and nature as we hold our views to the particular few.

    So before I begin here I wanted to make it clear, that having spent considerable time as hobby and interest about science. It is not without my own motivations that the interest would be the memory of one’s childhood, or the magazine that we looked at, but the reality we are dealing with and what we call the “nature of things.”

    An anomaly that cannot be explained nor shall it be removed because of the lack of evidence. It’s just one of those things that you cannot change in the person’s make up who has seen the world in a different way then normal. So shall he endeavor to accumulate all the things that are wrong to destabilization the view of truth of the world just so he can corrupt all those around him?

    I ask myself the question about "what is natural" because I seen what scientists were doing to each other about the theoretical/concepts/ideas models that they were adopting in their research, that I wanted to make sure that what I had been researching had been as up to date.

    Would one "leave out information that I had assembled" as they deal with me?

    As I have said before while the students have been engaged in the classroom I had been following the physics development as best I could. Spent years watching and learning

    So here's the thing.

    If I did not answer Stefan at Backreaction about the information about strangelets then it might have been left off where Stefan decided too as he continues to show his elementary particle thinking( finish the second part Stefan).

    Continued reference to strangelets might everyone think the conclusion as written I the way Stefan has shown it? Would information I had been developing have been less than the standard of what scientists hold as standard. How could anyone know it all? Hold the badge over the trial of LHC or RHIC and say I had broken the law with my insolence and corruptible behavior?:) Non! Qui?

    So here again is the conundrum I had placed in front of me as I looked and interacted with the various blogs who have commented on Lee Smolin’s book, “The trouble With Physics.”

    But first let me then deal with Stefan at Backreaction.

    Lubos Motl:
    Well, I think that even if someone believes that theoretical physics can't be trusted - and many people clearly do - there exists a less scientific argument why the accelerator won't lead to such a catastrophe: the Earth is bombed by a lot of very high-energy cosmic rays and the center-of-mass energy of the collisions is comparable to the LHC energies. So far, these collisions haven't destroyed the Earth, so it is reasonable that some additional collisions we create won't be able to do so either.


    While I had these similar thoughts it was not wothpt some basis the Blogett would have pointe dyou to think about strnagelets and then in my own assumptions, the comic particle collsions from what Ellis had taught us to think about. Yes, it was the natural collider in space for sure, and it's "energy values" well beyond what is availiable at LHC.

    So yes "Microstate creation of blackholes in space"

    In strangelets do not exist, I had come to the same conclusion Stefan did about what is "theoretically challenged" might have engaged the thinking mind as to the relationship to what the neutrino may have been in that exercise of the QGP, compared to this one on strangelets.

    So I gathered information to help me see the direction the physics was going. Least it escaped the mantra that I had been hearing exemplified in my dealings as best I can.

    “Lead by the Physics.” Now I face, "the trouble with Physics."

    See:

  • Strangelets Do Not Exist?
  • The Fate of our Planet?
  • Are Strangelets Natural?-Saturday, September 30, 2006
  • Wednesday, September 13, 2006

    What's on the Condense Matter Theorist's Mind?

    The Theory of Everything


    Prof. Robert B. Laughlin


    The crystalline state is the simplest known example of a quantum , a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. Robert Laughlin


    Thre are certain perspective that are different then what reductionism has done to serves it's purpose? Now such ideas lanquish because they seem unfitting. So you gain perspective by those who think about things differently and see what parameters rule the logic of their ideas.

    In his book The End of Science John Horgan argues that our civilization is now facing barriers to the acquisition of knowledge so fundamental that the Golden Age of Science must must be thought of as over [38]. It is an instructive and humbling experience to attempt explaining this idea to a child. The outcome is always the same. The child eventually stops listening, smiles politely, and then runs off to explore the countless infinities of new things in his or her world. Horgan's book might more properly have been called the End of Reductionism, for it is actually a call to those of us concerned with the health of physical science to face the truth that in most respects the reductionist ideal has reached its limits as a guiding principle. Rather than a Theory of Everything we appear to face a hierarchy of Theories of Things, each emerging from its parent and evolving into its children as the energy scale is lowered. The end of reductionism is, however, not the end of science, or even the end of theoretical physics. How do proteins work their wonders? Why do magnetic insulators superconduct? Why is 3He a superfluid? Why is the electron mass in some metals stupendously large? Why do turbulent fluids display patterns? Why does black hole formation so resemble a quantum phase transition? Why do galaxies emit such enormous jets? The list is endless, and it does not include the most important questions of all, namely those raised by discoveries yet to come. The central task of theoretical physics in our time is no longer to write down the ultimate equations but rather but to catalogue and understand emergent behavior in its many guises, including potentially life itself. We call this physics of the next century the study of complex adaptive matter. For better or worse we are now witnessing a transition from the science of the past, so intimately linked to reductionism, to the study of complex adaptive matter, firmly based in experiment, with its hope for providing a jumping-off point for new discoveries, new concepts, and new wisdom.


    So for me as I look at the state of the world I am asking what patterns were pre-esstablished that would govern the higg's mechanison and looking for such a "organizational attribute" would have settled the question as to why people gathered around the professor as Einstein crossed the room.

    From a reductionsitic standpoint what was the "energy" doing as we used these colliders as mechanisims towards matter/mass comstituents discovery. Did this disavow our views on what was emergent from a point in spacetime?

    So of course I will draw people's attention to what I think has to come into "expression" and how this is done. What is the "basis" of that expression and how we will see it explode into the sociological valuation that constitutes our society of exchanges.

    I referred to John Nash here many times. What is it, he discovered at the heart of "negotiated processes?" What is the schematics of that expression that he identified in human behavior, as showing such schemas? Birds, that had some "higher organization pattern" that governed flock movement?

    So are strings a emergent phenomena? You had to know their place in the scheme of things. Do your recognized the method as to the nergy valuation given? How such branching is effected, based on some "Feynman toy model discription" that revealed what about the early universe?

    Edward Witten:
    One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics


    What about pushing "perspective back" to the microseconds? At what point does the Universe make itself known? Had you already forgotten about the "first three microseconds?"

    Monday, June 05, 2006

    Types of Blogging Software



    Ask yourself this? What is the new kernel to be, if we had for one moment presented the opportunities for the using Riemann hypothesis, and contained the very idea as a philosophy presented within this blog?

    A VIEW OF MATHEMATICS by Alain CONNES
    Each generation builds a mental picture" of their own understanding of this world and constructs more and more penetrating mental tools to explore previously hidden aspects of that reality.


    Would such a "paradigmal change" allow for insightual software development to take a turn for the better if the understanding existed, that one had already left the cave, and saw the aspects of probable outcomes, as more then the primes and it's integrations with physics mentality, along with theoretical development?

    Micro-quantum structures that are exemplfiled, in Monte Carlo methods?

    Are we "FREE" to Express?

    While I have enjoyed the blogging experience of Blogger.com, and the integration of development that had been going on, the questions remain, as to where this information is deposited and how the moderation of "such a tool" is enforced?

    Like many important concepts, Web 2.0 doesn't have a hard boundary, but rather, a gravitational core. You can visualize Web 2.0 as a set of principles and practices that tie together a veritable solar system of sites that demonstrate some or all of those principles, at a varying distance from that core.



    I have a certain ideology about trying to bring together as much information as possible, by asking, if image linking, and phrase connections, do not involve copyright infringements, and allow the versatility of blogging experience, while respecting the owners of images and wording, while connected directly to their source.

    Linux is subversive. Who would have thought even five years ago (1991) that a world-class operating system could coalesce as if by magic out of part-time hacking by several thousand developers scattered all over the planet, connected only by the tenuous strands of the Internet?

    Certainly not I. By the time Linux swam onto my radar screen in early 1993, I had already been involved in Unix and open-source development for ten years. I was one of the first GNU contributors in the mid-1980s. I had released a good deal of open-source software onto the net, developing or co-developing several programs (nethack, Emacs's VC and GUD modes, xlife, and others) that are still in wide use today. I thought I knew how it was done.

    Linux overturned much of what I thought I knew. I had been preaching the Unix gospel of small tools, rapid prototyping and evolutionary programming for years. But I also believed there was a certain critical complexity above which a more centralized, a priori approach was required. I believed that the most important software (operating systems and really large tools like the Emacs programming editor) needed to be built like cathedrals, carefully crafted by individual wizards or small bands of mages working in splendid isolation, with no beta to be released before its time.



    This has been on my mind as I brought together many aspects of the information that is out there. From the respectable information posted by scientists and their personal experiences, to those shared by all, through such blogging experiences. So what was the battle brewing about from those early days and the struggle to develope communities, sharing information, and who are these people today?

    AOL=Netscape? Microsoft? Google? Yahoo?

    How would such blogging experiences allow the movement forward of society, and the thinking brain, this internet has become?

    Are there concerns, that the human being once exposed to the vastness of this information, could bring it together in such a way, as to insight the "new idea" that would forward research and developement? Encourage our minds to percieve in other ways that we are not accustom? I gave an example at the very beginning of this post in regards to the Riemann Hypothesis.


    Witten:
    One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.


    This is important to ask, because if such an ability is focused through the individuals efforts using such a medium, how could/would it be exploited, that it could be brought to the forefront of the "thinking brain/internet" and find indeed, that such information is useful?

    Meddle then in the internal structure and enforce the rights of deposition as to the respository, and deal with it as you like?

    The information depository costs money, I know? Image transference costs money. Then how shall "the dream of the thinking mind" ask, that if the repositories are the resources held in abeyance, until used as seen fit, then why not/should disrupt the information gathering and make it disjointed, while we/you look at it? Before it reveals it's state secret? An open society, right? People who are free?

    Robert Laughlin:
    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


    This would mean that the very ideas of the internet explosion and control of it becomes in question, as well as, the provders we use to express ourselves on the internet?

    How will these repositiories change then in technologies that you and I are very quickly connected in ways that the human mind/internet becomes quite capable of seeing, in ways it is not accustom?

    What revolution/paradigmalchange will then happen, that the very experiences we now enjoy, will be defuncedt with all the software solutons to metigate the ability for the individual to do what any of us can do freely, without any ofthe blogging software now demonstrated below?

    Shall we choose carefully, read the requirements of, and what conclusion have you reached?

  • b2evolution

  • bBlog

  • Blogger

  • Bloxsom

  • Blojsom

  • Drupal

  • ExpressionEngine

  • Geeklog

  • Greymatter

  • iUpload

  • LifeType

  • LiveJournal

  • Movable Type

  • MvBlog

  • Nucleus CMS

  • PostNuke

  • Roller Weblogger

  • Serendipity

  • Slash

  • TypePad

  • Typo

  • TYPO3

  • WordPress

  • Xanga


  • If we are looking for the new "idea" where shall it arise from then? It is apparent that the early thinking in cosmology has been changed(to include strings ina time sequence of events evn thoguh they be micro seconds) and so too, the values of measure in "time," recognized as problematic, in terms of it's discrete value, when it is very well understood that continuity of expression can be very smooth(yet is it?)?

    The count of Primes begins in Chaos. If we were to think of the Riemann Hypothesis assigned to a scale as an approximation to the prime distribution function, then how woud any pattern suffice to be an "emergent property" of that chaos?

    Sunday, April 30, 2006

    Is the door open to the eruption of the sociology of knowledge?

    Nobody really thinks about the subtle perceptions that can make their way into the scientist's mind? Do they?

    While, I had talked about the quiet places we like to go to find that peace of mind, it might be different for each of us? Maybe for Clifford, it is the stream. Maybe for a Witten and his walks, the stream, as well?

    I spent a lot of years watching the subtle language that one can draw from the subconscious in dream time and to me such suttle obsersvation while fleeting, it always is a good idea to have a pen and paper alongside of you. Because, it happens that quick sometimes, that if you don't catch it, it sort of leaves the focal front to the tip of the tongue, as a puzzling thought about?

    This enlightenment experience is a realization about the nature of the mind which entails recognizing it (in a direct, experiential way) as liminocentrically organized. The overall structure is paradoxical, and so the articulation of this realization will 'transcend' logic - insofar as logic itself is based on the presumption that nested sets are not permitted to loop back on themselves in a non-heirarchical manner. 11


    Piercing the veil perhaps?

    Some of the things that seem to influence creativity, is the very idea of flow, and sitting by a river, "to think" might be one, or sitting high up on a mountain looking over the landscape, perhaps? Looking deep into "the space of the starry universe" above?



    Observation is really important I believe. If I were to say the "space between the heartbeat," it would not have been to unlikely, that the points between something, could ever be reduced to have it seem that our "quantum perception" has revealled a dynamical reality?

    Yes it's true. Energy calculations revealled information about the space we are living in? Nothing confusing about that. How silly then, that such a suttle perception as to the cards below would have passed our attention unsignificant?


    Anomaly and the Emergence of Scientific Discoveries[/b] Kuhn now moves past his initial topic of paradigm to scientific discovery saying that in order for there to be a discovery, an anomaly must be detected within the field of study. He discusses several different studies and points out the anomaly that invoked the scientific discovery. Later in the chapter he begins to discuss how the anomaly can be incorporated into the discovery to satisfy the scientific community.

    There are three different characteristics of all discoveries from which new sorts of phenomena emerge. These three characteristics are proven through an experiment dealing with a deck of cards. The deck consisted of anomalous cards (e.g. the red six of spades shown on the previous page) mixed in with regular cards. These cards were held up in front of students who were asked to call out the card they saw, and in most cases the anomaly was not detected.


    Attention and awareness is sometimes like listening "between the heartbeats?" Also if you look at that space what is it then filled with? I had a hard time of it trying to understand what nothing meant. It just does not make sense. Nothing is Nothing, and something out of Nothing is really a hard one to ponder for me so I had to see these dynamics working in ways that would tax the mind visually.



    So what did I do?

    Why is sound so important in the analogies of science now? Acoustically, what would the science of sound mean in our discriptions of the landscape? How does it change the way we thnk and do, and leads our thinking minds into some kind of entrainment that is rhythmetically enhanced? What does it do for the brain waves? Functional use, done in MRI study, along with the process of thinking?



    So I thought I should build a world that leads us to realize the reality we create. You think I did not think of the color of these situations? Look carefully at the ephemeral qualities of mind.

    You have to understand that the geometrical realization at the basis of my own experiences were derived from understanding the work of Carl Jung, and the mandalas he talked about.

    The way in which he might have divided up the circle according to the way our minds work. Having the anima and animus respectvely in both male and female, what really made me think of the topological function of the mind, are up top, on the enlightenment plate. Balance was needed to be struck and this is done automatically depending on our genders the balance would have been injected accordingly?

    If you think for one moment our past history is not important, what use to understand that we continue evolve within our consciousness?

    There are such designs from our expierence, to learn? You might have read my views on emotions and experience, and how we cannot change what has already happened, but we can meet the expeirence and change the attitude? That is within our power and ths is what sets up the future.

    Proceedings of Societies [Report on the Law of Octaves]
    Mr. JOHN A. R. NEWLANDS read a paper entitled "The Law of Octaves, and the Causes of Numerical Relations among the Atomic Weights."[41] The author claims the discovery of a law according to which the elements analogous in their properties exhibit peculiar relationships, similar to those subsisting in music between a note and its octave. Starting from the atomic weights on Cannizzarro's [sic] system, the author arranges the known elements in order of succession, beginning with the lowest atomic weight (hydrogen) and ending with thorium (=231.5); placing, however, nickel and cobalt, platinum and iridium, cerium and lanthanum, &c., in positions of absolute equality or in the same line. The fifty-six elements[42] so arranged are said to form the compass of eight octaves, and the author finds that chlorine, bromine, iodine, and fluorine are thus brought into the same line, or occupy corresponding places in his scale. Nitrogen and phosphorus, oxygen and sulphur, &c., are also considered as forming true octaves. The author's supposition will be exemplified in Table II., shown to the meeting, and here subjoined:--


    In this way I sort of felt that a calm mind and a calm heart, would allow one to see the discrepancies better. I do not know if that is the truth of it, but imagine our perception going deeper then it had ever gone before? There had to be some results, from listening?

    A Chladni plate consist of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes set up form a complex but symmetrical pattern over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates;


    If one moment you thought of the Law of Octaves above, what place "the heart" to serve for our evolving consicousness?

    The Revolution that Didn't Happen by Steven Weinberg

    I first read Thomas Kuhn's famous book The Structure of Scientific Revolutions1 a quarter-century ago, soon after the publication of the second edition. I had known Kuhn only slightly when we had been together on the faculty at Berkeley in the early 1960s, but I came to like and admire him later, when he came to MIT. His book I found exciting.

    Evidently others felt the same. Structure has had a wider influence than any other book on the history of science. Soon after Kuhn's death in 1996, the sociologist Clifford Geertz remarked that Kuhn's book had "opened the door to the eruption of the sociology of knowledge" into the study of the sciences. Kuhn's ideas have been invoked again and again in the recent conflict over the relation of science and culture known as the science wars.



    See:

  • Revolutions for Change

  • Path With a Heart
  • Friday, December 09, 2005

    Laughlin, Reductionism, Emergence

    I am still operating from the idea of Xtra-Dimensions. What motivating force would have brought such a quantum gravity group together and the aspect it might have spoken from? What mysterious forces motivates all these ladies/ gentlemen?

    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.



    Can I hardly leave this post written below in my linked coment without some further explanantion?

    Sean:
    You have to be careful about words like “emergent,” because it has pre-existing connotations that may or may not be relevant to how the theory ends up actually working.


    You know for me it became the quest to understand what the basis of reality was. So if one is given perspective to think about from different angles, then the very idea of a "emergent process unfolding from the quantum gravity regimes", then it would have been a truly ground breaking acknowledgement of what the basis of reality really is?

    Plato:
    I would have thought the modifications to GR might have signalled some truth to what was emergent(although this would ask us what that quantum geometry is?) from a condense matter perspective, as Witten saids below.

    I also heard Robert Laughlin say, it didn’t matter if you use bricks or sargeant majors?

    I had trouble with this ,and looking at CFT on the horizon, it made me think of string as a fifth dimensional component within the blackhole. Is this wrong and misleading, not to have looked at the spacetime fabric a a graviton constituent since these modifications were made to GR?


    My thoughts were developing in perspectve as I did my own research, so all of a sudden the basis of the views that I was capturing started to make sense. What were people doing with the very ideaas of this theory of everything?


    Witten:
    One thing I can tell you, though, is that most string theorist’s suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.


    The Elephant?

    Now having given the poem there for Sean's introduction to Mind and the poetry, we are given a sense of what the historical issues plaguing the ideas of quantum gravity? Filled with the perplex of citizens of a town? To have the proverb, this hinduist portrayal, Sufi expressed, as a lessson in our attempts to understand. It was not me, who first used John Saxes poem in the Physics realms, so do you know who this was?




    So now we have this condense matter approach to consider? I wonder how well it will do when people share perspective about "this approach" to have taken a strong stance against Robert Laughlin's theory of everything? Where are you Peter Woit? What is your way, that you should be so different from what Lubos is saying below?


    Lubos Motl:
    All of us agree that some important features of physical phenomena do not depend on the details of underlying physics; many of these phenomena are emergent in character; it is not too important or useful to know quarks or strings in order to study most of the crucial concepts in biology, climate, physics of water, or quantum computing. If Laughlin thinks that other physicists do not realize this fact, then he is fighting a strawman. Most physicists realize these things - and many fundamental physicists actually use very similar mathematical techniques as Laughlin does in his "emergent" approach.


    So is there a consensus on how the science of our day recogizes the work that is trying to make iself known, as the truth and the light of the way? What does the elephant represent?

    Robert Laughlin:
    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


    How far in depth shall our abstract views look, as one uses the math to gaze into the "blackhole of oblivion" and wonder? What constitues the very nature from that very horizon. How shall Robert Laughlin speak on it? How shall he speak about the trigger?

    Saturday, October 08, 2005

    Langlands Duality


    Appointed to Princeton as an instructor after completing his doctoral studies, Langlands taught there for seven years and was promoted to associate professor. He spent 1964-65 at the University of California, Berkeley as a Miller Foundation Fellow and an Alfred P Sloan Fellow. Then in 1967 he returned to Yale University as a full professor. However Langlands spent 1967-68 visiting in Ankara, Turkey having an office next to that of Cahit Arf. After five years at Yale he returned again to Princeton, this time as professor of mathematics at the Institute for Advanced Study. He has remained at the Institute for Advanced Study since his appointment there in 1972.


    In 1967 he wrote a letter to Weil which contains profound mathematical ideas which continue to drive a whole area of mathematical research. The letter was 17 pages hand-written and sent in January 1967. It sketched what soon became known as "the Langlands conjectures". Weil had the letter typed and this typed version circulated widely among mathematicians interested in the topics. Casselman writes in [3] that the letter contained:-


    ... a collection of far-reaching and uncannily accurate conjectures relating number theory, automorphic forms, and representation theory. Theses have formed the core of a program still being carried out, and have come to play a central role in all three subjects.


    The work of Robert Langlands

    ....is currently a Professor at the Institute for Advanced Study in Princeton. He has won several awards recognizing his outstanding contributions to the theory of automorphic forms, among them an honorary degree from the University of British Columbia in 1985.


    Letter to André Weil from January, 1967
    Dear Professor Weil,

    While trying to formulate clearly the question I was asking you before Chern’s talk I was led to two more general questions. Your opinion of these questions would be appreciated. I have not had a chance to think over these questions seriously and I would not ask them except as the continuation of a casual conversation. I hope you will treat them with the tolerance they require at this stage. After I have asked them I will comment briefly on their genesis.


    It might be good to begin from statements made from Weil and this letter circulated. It might help set up early history and thoughts and ideas lead into the Langland Duality Lubos has renamed. References made by Lubos today and following correspondance by Peter Woit. Lubos Motl, opens his blog entry with following link.

    Gauge Theory and the Geometric Langlands Program by Edward Witten
    August 10th, 2005
    Based on notes by Ram Sriharsha

    Introduction
    The Langlands program of number theory, or what we might call Langlands duality, was proposed in more or less its present form by Robert Langlands, in the late 1960s. It is a kind of unified scheme for many results in number theory ranging from quadratic reciprocity, which is hundreds of years old, to modern results such as Andrew Wiles’ proof of Fermat’s last theorem, which involved a sort of special case of the Langlands program. For today, however, I will not assume any prior knowledge of the Langlands program.


    Langlands duality , by Lubos Motl
    I am using Witten's favorite word "duality" instead of "program" because it is a bit more concrete; it's puzzling why the mathematicians haven't realized that their terminology can be sharpened. I encourage everyone to respect that the official terminology has changed to a "duality" right now.


    Notes for Witten Lecture by Peter Woit
    Witten gave a lecture on the beach at Stony Brook on the topic of gauge theory and the Langlands program two months ago, and lecture notes are now available. Lubos Motl has a posting about this, where he promotes the idea that people should stop referring to the “Langlands Program” and just refer to “Langlands duality”.



    Langlands Program and Physics by Peter Woit
    One of my minor hobbies over the years has been trying to understand something about the Langlands conjectures in number theory, partly because some of the mathematics that shows up there looks like it might be somehow related to quantum field theory. A few days ago I was excited to run across a web-page for a workshop held in Princeton earlier this year on the topic of the Langlands Program and Physics. Notes from some of the lectures there are on-line.


    Geometric Langlands Program
    This program is dedicated to the investigation of the geometric Langlands, its relationship to other areas of mathematics, and its relationship to physics;


    THE LANGLANDS PROGRAM AND PHYSICS NOTES BY MATT SZCZESNY

    The following are notes from the workshop on connections between the Langlands correspondence and Physics that took place at the Institute for Advanced Study at the beginning of March, 2004. Its purpose was to bring together researchers in representation theory and string theory to explore the question of whether it is possible to give a physical perspective on the geometric Langlands correspondence. Certain parts of geometric Langlands make use of tools arising in Conformal Field Theory (CFT), and so provide a point of contact between the two fields.