Showing posts with label Wayne Hu. Show all posts
Showing posts with label Wayne Hu. Show all posts

Tuesday, April 15, 2014

Multiverse or Universe? - Andre Linde (SETI Talks)



Published on Jan 1, 2013
SETI Talks archive: http://seti.org/talks
Cosmological observations show that the universe is very uniform on the maximally large scale accessible to our telescopes, and the same laws of physics operate in all of its parts that we can see now. The best theoretical explanation of the uniformity of our world was provided by inflationary theory, which was proposed 30 years ago.
See:  Multiverse or Universe? - Andre Linde (SETI Talks)

***  

See Also:

Thursday, April 10, 2014

The Map of B Mode Imprints


Figure 3: Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < ℓ < 120. Right: The equivalent maps for the first of the lensed-ΛCDM+noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines display the equivalent magnitude and orientation of the linear polarization. Note that excess B-mode is detected over lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at ℓ ≈ 70). (Also note that the E-mode and B-mode maps use different color/length scales.)

BICEP2 2014 Release Figures from Papers

 You know the distinctions on how one might see information as purported to exist as gravitational waves  of course held my perspective. Like others,  is this a way in which BICEP has illustrated something of the every nature of space-time, as to my thoughts then, when it really was only about seeing a footprint in the WMAP.


Gravitational waves open up a new window on the universe that will allow us to probe events for which no electromagnetic signature exists. In the next few years, the ground-based interferometers GEO-600, LIGO, VIRGO and TAMA should be able to detect the high-frequency gravitational waves produced by extreme astrophysical objects, providing the first direct detection of these disturbances in space–time. With its much longer arm lengths, the space-based interferometer LISA will, if launched, be able to detect lower-frequency gravitational waves, possibly those generated by phase transitions in the early universe. At even lower frequencies, other experiments will look for tiny signatures of gravitational waves in the cosmic microwave background. Source: NASA.

Gravity Wave Spectrum


So it is a footprint then and I might show some of those maps and ask what do these footprints show in the early universe as to say, that given the inflationary timeline what can be garnered about looking back so far as to suggest 13.8 billion years and have such an imprint hold relevance, and equal the very nature of space-time itself.

Figure 18: Results of far-field beam characterization with a chopped thermal source. Left: Typical measured far-field beam on a linear scale. Middle: The Gaussian fit to the measured beam pattern. Right: The fractional residual after subtracting the Gaussian fit. Note finer color scale in the right-hand differenced map.

BICEP2 2014 Release Figures from Papers



The nature of the question for me is a "sensor mode developmental model" that chooses to exemplify gravitational waves over another and I had to make this clear for myself. So you can see where this has lead me. To where I want to further understand. If you choose not to show a comment then I guess that is where I lose.

 
Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...

See:Weber Bars Ring True?

The analogy rests with how the nature of gravitational waves had been sounded so as to show a connection to the WMAP as a footprint. So you have this 2 dimensional map surface as to exemplary how gravitational waves may appear on it, yet,  the visual extent of that correlation is representative to me of a defined configuration space. You need your physics in order to establish any correlation to the timeline of the inflationary model and to see that such a map reveals efforts to penetrate the Planck era. To suggest quantum gravity.

At least two detectors located at widely separated sites are essential for the unequivocal detection of gravitational waves. Local phenomena such as micro-earthquakes, acoustic noise, and laser fluctuations can cause a disturbance at one site, simulating a gravitational wave event, but such disturbances are unlikely to happen simultaneously at widely separated sites. 

Correlating Gravitational Wave Production in LIGO
See Also:


So indeed to have such a map is very telling to me not just of the imprint but also of the sensory mode we had chosen to illustrate that map of the B mode representation as a valid model description of that early universe.

Monday, March 17, 2014

We've Come a Long Way

In 2003 the WMAP craft measured the very small fluctuations – about one part in 100,000 – in the temperature of the cosmic background radiation (coloured regions). These fluctuations, which are in excellent agreement with the predictions of Big Bang theory, originated during inflation and evolved under the influence of both gravity and the pressure of the matter–radiation plasma before particles in the plasma recombined to form hydrogen atoms. Buried in this pattern might also be fluctuations from primordial gravitational waves, but to tease out their signature researchers have to map in detail the polarization of the photons as well as their temperature (white lines represent the electric polarization vector). Since gravitational waves produce a quadrupolar anisotropy and therefore induce polarization without an associated temperature fluctuation, they (and only they) are able to generate a polarization pattern that cannot be expressed as the gradient of a scalar. Source: NASA.

In 2003 the WMAP craft measured the very small fluctuations – about one part in 100,000 – in the temperature of the cosmic background radiation (coloured regions). These fluctuations, which are in excellent agreement with the predictions of Big Bang theory, originated during inflation and evolved under the influence of both gravity and the pressure of the matter–radiation plasma before particles in the plasma recombined to form hydrogen atoms. Buried in this pattern might also be fluctuations from primordial gravitational waves, but to tease out their signature researchers have to map in detail the polarization of the photons as well as their temperature (white lines represent the electric polarization vector). Since gravitational waves produce a quadrupolar anisotropy and therefore induce polarization without an associated temperature fluctuation, they (and only they) are able to generate a polarization pattern that cannot be expressed as the gradient of a scalar. Source: NASA. See: Sounding out the Big Bang

BICEP2 Observatory in Antarctica

Cosmic searches at the South Pole. The BICEP-2 Telescope is the up-facing dish at right. The larger white dish is the South Pole Telescope (SPT), and the building is the Dark Sector Laboratory. Both experiments observe in the millimeter-submillimeter part of the spectrum, mapping polarization patterns in the cosmic background radiation.

...... will announce a “major discovery” about B-modes in the cosmic microwave background See: Who should get the Nobel Prize for cosmic inflation?

UPDATE
Closing thoughts -
BICEP2: Primordial Gravitational Waves!
The BICEP result, if correct, is a spectacular and historic discovery.  In terms of impact on fundamental physics, particularly as a tool for testing ideas about quantum gravity, the detection of primordial gravitational waves is completely unprecedented.  Inflation evidently occurred just two orders of magnitude below the Planck scale, and we have now seen the quantum fluctuations of the graviton.  For those who want to understand how the universe began, and also for those who want to understand quantum gravity, it just doesn't get any better than this.
In fact, it all seems far too good to be true.  And perhaps it is: check back after another experimental team is able to check the BICEP findings, and then we can really break out the champagne.


This should be really interesting.

***

Stanford Professor Andrei Linde celebrates physics breakthrough  

 ***

See Also:

Saturday, December 21, 2013

Weber Bars Ring True?



Gravitational Radiation

Gravitational waves have a polarization pattern that causes objects to expand in one direction, while contracting in the perpendicular direction. That is, they have spin two. This is because gravity waves are fluctuations in the tensorial metric of space-time.


How would you map this above?

WMAP image of the Cosmic Microwave Background Radiation


Here's the thing for those blog followers who are interested in the application of sound as a visual representation of an external world of senses.



 In this example I’m going to map speed to the pitch of the note, length/postion to the duration of the note and number of turns/legs/puffs to the loudness of the note.See: How to make sound out of anything.

I have my reasons for looking at the trail that began with Gravitational wave research and development. If we are accustom to seeing and concreting all that reality has for us,  can a question be raised in mind with how one has been shocked by an anomaly?

I am not asking for anyone  to abandon their views on the science of,  just respect that while not following the rules of  science here as to my motivational underpinnings, I have asked if science can see gravity in ways that have not be thought of before.  This is not to counter anything that has been done before.

The historic approach to Gravitational Research was important as well,  to trace it back to it's beginning.

Can we use such measures to exemplify an understanding of the world we live according  to a qualitative approach? This has occupied my thoughts back to when I first blogged about JosephWeber in 2005. Here is a 2000 article linked.
In the late 1950s, Weber became intrigued by the relationship between gravitational theory and laboratory experiments. His book, General Relativity and Gravitational Radiation, was published in 1961, and his paper describing how to build a gravitational wave detector first appeared in 1969. Weber's first detector consisted of a freely suspended aluminium cylinder weighing a few tonnes. In the late 1960s and early 1970s, Weber announced that he had recorded simultaneous oscillations in detectors 1000 km apart, waves he believed originated from an astrophysical event. Many physicists were sceptical about the results, but these early experiments initiated research into gravitational waves that is still ongoing. Current gravitational wave experiments, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA), are descendants of Weber's original work. See:Joseph Weber 1919 - 2000
***



Space, we all know what it looks like. We've been surrounded by images of space our whole lives, from the speculative images of science fiction to the inspirational visions of artists to the increasingly beautiful pictures made possible by complex technologies. But whilst we have an overwhelmingly vivid visual understanding of space, we have no sense of what space sounds like.

  See previous entries on "Weber Bar" by typing in Search Feature on side bar. See also below.


Monday, July 22, 2013

The Universe of Sound: Subodh Patil - Collide@CERN Inspiration Part



Dr. Subodh Patil is a cosmologist at CERN and is the inspiration partner for Bill Fontana, 2012-2013 Prix Ars Electronica Collide@CERN winner, during his residency at CERN. Bill began his 3-month residency at CERN at an event called "The Universe of Sound" on July 4th, 2013, in the CERN Globe of Science & Innovation. In this excerpt from this event, Dr. Patil explains the parallels between physics, cosmology, sound, and music.
Watch the video of Bill Fontana's talk here: http://www.youtube.com/watch?v=6Zjy8v...




See:

Thursday, March 17, 2011

Developing Scenario

We can learn about the first fraction of a second, among other things, by studying the polarization pattern of the CMB...Yuki D. Takahashi

I was glad to see link  by Bee of Backreaction that expanded on what I had learn previously from Wayne Hu.

[Dr. Kip Thorne, Caltech 01]
 
My comments in relation to Kip Thorne was in relation to the development of LIGO testing model . To combine all assets of our abilities experimentally in the pursuance of science is to see that the expression of the universe would include "all these things" as demonstrated in Kip Thorne's plate. So while we may look at the energy spectrum of Gamma, we are also looking at part of the expression of science from very minute and particulate understandings as if we would turn to the cosmos and say yes this is part of the view as well.

Sunday, March 01, 2009

Gravity Wave Spectrum

PURPOSE: To show the two-dimensional standing waves on the surface of a square or circular plate.


Early perception of sound as analogy to the ideas of the WMAP background were forming in my mind when Wayne HU was demonstrating the image of polarizations in B mode. To me its as if one puts on a pair of glasses and based on an assumption of the gravitational waves, then one tends to see "all of it" in this Lagrangian way.



With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universe.Polarization


This was the basis of how I was seeing the progression of Webber's experiments in using the aluminum bars in gravitational wave detection. It was also more then this that I came to the conclusion I did.

***


Sounding out the Big BangJun 1, 2007 by Craig J Hogan is in the departments of physics and astronomy at the University of Washington, Seattle, US.

Our view of the universe is about to change forever. Since science began, all our knowledge of what lies above, below and around us has come from long-familiar forms of energy: light, produced by distant astrophysical objects; and matter, in the form of particles such as cosmic rays. But we are now in a position to study the universe using an entirely different form of energy that until now has never been directly detected – gravitational waves.





Gravitational waves open up a new window on the universe that will allow us to probe events for which no electromagnetic signature exists. In the next few years, the ground-based interferometers GEO-600, LIGO, VIRGO and TAMA should be able to detect the high-frequency gravitational waves produced by extreme astrophysical objects, providing the first direct detection of these disturbances in space–time. With its much longer arm lengths, the space-based interferometer LISA will, if launched, be able to detect lower-frequency gravitational waves, possibly those generated by phase transitions in the early universe. At even lower frequencies, other experiments will look for tiny signatures of gravitational waves in the cosmic microwave background. Source: NASA.


The flow of energy in a cosmic phase transition is similar to that in a waterfall, with turbulence in the cosmic fluid generating a gravitational-wave background today.

***


Sound and fluidized interpretation seemed very close to me of the way in which such analogy would help us to look at the universe and the spaces in between cosmological locations, as if, in a three body problem relation.

The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background submitted by Scott Dodelson Sun, 22 Feb 2009 14:27:37 GMT

Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habitat. The age-old questions have been transformed into two pressing issues primed for attack in the coming decade: How did the Universe begin? and What physical laws govern the Universe at the highest energies? The clearest window onto these questions is the pattern of polarization in the Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial gravity waves. A detection of the special pattern produced by gravity waves would be not only an unprecedented discovery, but also a direct probe of physics at the earliest observable instants of our Universe. Experiments which map CMB polarization over the coming decade will lead us on our first steps towards answering these age-old questions.


***


See:
  • Sound Waves in the CMB
  • The Sound of the Landscape
  • Distinctions of Holographical Sound
  • B Field Manifestations
  • Thursday, December 28, 2006

    First Stars Behind the Scene

    There are several recognized processes from the early universe that leave relic effects setting the stage for galaxy formation and evolution. We deal here with the first generarion of stars, primordial nucleosynthesis, the epoch of recombination, and the thermal history of various cosmic backgrounds.


    Part of understanding the time line is first knowing where the Pregalactic Universe exists in that time line.

    Plato:
    So given the standard information one would have to postulate something different then what is currently classified?

    A new Type III (what ever one shall attribute this to definition), versus Type I, Type IIa?


    The idea is to place the distant measure in relation to what is assumed of TYPE I, TypeIIa. It assumes all these things, but has to been defined further, to be a Type III. That's the point of setting the values of where this measure can be taken from.

    I wrote someplace else the thought generated above. It is nice that the world of scientists are not so arrogant in some places, while some have been willing to allow the speculation to continue. Even amidst their understanding, that I was less then the scientist that they are, yet recognizing, I am deeply motivated to understanding this strange world of cosmology and it's physics.

    When I wrote this title above I was actually thinking of two scenarios that are challenging the way I am seeing it.


    Credit: NASA/WMAP Science Team
    WMAP has produced a new, more detailed picture of the infant universe. Colors indicate "warmer" (red) and "cooler" (blue) spots. The white bars show the "polarization" direction of the oldest light. This new information helps to pinpoint when the first stars formed and provides new clues about events that transpired in the first trillionth of a second of the universe.


    First of these, was in terms of the time line and what we know of the WMAP demonstration given to us of that early universe. I of course inject some of what I know by past research to help the general public understand what is being demonstrated from another perspective.

    This is what happens as you move through different scientists(Wayne Hu) thoughts to see the world in the way they may see it. This concept can be quite revealing sometimes giving a profound effect to moving the mind to consider the universe in new ways.



    "Lagrangian views" in relation may have been one result that comes quickly to my mind. Taking that chaldni plate and applying it to the universe today.



    Even though in the context of this post, we may see the universe in a "simple experiment" not just demonstrating the "early universe," but the universe in it's "gravitational effect" from that evolution to matter defined now.

    The Time Line


    Credit: NASA/WMAP Science Team
    The expansion of the universe over most of its history has been relatively gradual. The notion that a rapid period "inflation" preceded the Big Bang expansion was first put forth 25 years ago. The new WMAP observations favor specific inflation scenarios over other long held ideas.


    Looking to the "far left" of the image we see the place where the cosmic background is being demonstrated, while to the "far right" we see the satellite which has helped measure what we know of the early universe. So this "distant measure" has allowed us to understand what is behind the scene of what we know of cosmology today of events, galaxies and such.

    Second, what comes to mind is the Massive Blue Star of 100 Solar masses that would have been further out in terms of the billions of years that we may of sought in terms of our measures. So this would be of value I would assume in relation to model perspective and measures?

    So the distance measure has been defined then by understanding the location of the cosmic background and the place where the Blue giants will have unfolded in their demise, to the creation of blackholes.


    The processes in the Universe after the Big Bang. The radio waves are much older than the light of galaxies. From the distortion of the images (curved lines) - caused by the gravitation of material between us and the light sources - it is possible to calculate and map the entire foreground mass.Image: Max Planck Institute of Astrophysics
    We don't have to wait for the giant telescope to get unparalleled results from this technique, however. One of the most pressing issues in current physics is to gain a better understanding of the mysterious Dark Energy which currently drives the accelerated expansion of the Universe. Metcalf and White show that mass maps of a large fraction of the sky made with an instrument like SKA could measure the properties of Dark Energy more precisely than any previously suggested method, more than 10 times as accurately as mass maps of similar size based on gravitational distortions of the optical images of galaxies.

    Sunday, January 16, 2005

    Distinctions of Holographical Sound

    With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universe.

    Wayne Hu

    A lot of times is it very hard for me to even concieve of what a dimensional world might look like. So I tend towards defining this priniple in someway that is reduced to tangible realities in configurations.

    So lets say that the higher dimensional realities can be associated to sound. Now I am not concerned right now with the physics of sounds, but want to speak about this for a moment in context of the gravitational wave disguised as the graviton, comparative to the phonon, as a representative for sound.

    Now of course I would draw some great criticisms here for playing around with to many things, but I have reasons for doing so.

    Let me just seal it for now with this.

    Here’s an analogy to understand this: imagine that our universe is a two-dimensional pool table, which you look down on from the third spatial dimension. When the billiard balls collide on the table, they scatter into new trajectories across the surface. But we also hear the click of sound as they impact: that’s collision energy being radiated into a third dimension above and beyond the surface. In this picture, the billiard balls are like protons and neutrons, and the sound wave behaves like the graviton.


    So you get my point here, lets think about what the idea of the holographical could represent if you want to move your thoughts and into the world of the graviton and the world of dimensions.

    Some may not be concerned, by the implications of concepts becoming, but it is vital that such idealizations firmly entrench themselves within the comprehension of what settles in any mind, might be very constructive of a schematic? Is previously describe in those dimensions. Oh boy you say! It's a very simple concept once it is understood.

    Since there exist in this four dimensional structure [space-time] no longer any sections which represent "now" objectively, the concepts of happening and becoming are indeed not completely suspended, but yet complicated. It appears therefore more natural to think of physical reality as a four dimensional existence, instead of, as hitherto, the evolution of a three dimensional existence.


    The three dimensinal frame is easy to contend with becuase it is easily contrive as a perspective, and one that si rightly so, what ever your perspective?:)


    This is part of the difficult is using analogous contexts to describe the potential that vibratory rate might have, and if it settles itself to some zeropoint consideration, that is distinctive of this particle, then might we say the nature of the energy has been discerned, in what it represents. Harmonically, its signature revealled, but what pray tell might the harmonious states reveal of the self, if we move back to the pool table for consideration? What psychological processes have been born in mind that have constructed themself into a ideal, developed in potential reformations of idealizations?



    A Chladni plate consist of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes set up form a complex but symmetrical pattern over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates;

    But there's more to this for consideration that must be contended with, and for this I have contrive the holographical world to a three diensional frame as a solidifcation of sorts. So I must interject with a bow and a steel plate for this example, knowing full well that I have added the third coordinate by injecting it into the two. Forgive me:) But I wanted to get to the pool table and the balls that collide for obvious reasons. Dimensional reduce to schematics, you might say.


    PURPOSE: To show the two-dimensional standing waves on the surface of a square or circular plate.


    It never really makes a impression unless you consider the significance of the sound and what is embedded within it that can be reduced to the abstractual coordinates of some math, that we have seen readily available distinction immediately designed?

    So there is no arguement about this, the place in a two dimensional surface is easily understood, but if you raised this to a sphere, bubble resonances would have been easily configure to fuller designs(?), or maybe even patterns moved to the third dimension, from the drum. But here we have freed the mind to all kinds of exposures that now spheres as circle on two dimensional plane might be described, as the radius' evolve to larger perspectives. Oh dear Hinton what have you done?:)

    Plato's Solids, and the Sound of the Landscape?