Showing posts with label Viscosity. Show all posts
Showing posts with label Viscosity. Show all posts

Monday, March 03, 2014

Laminar Flow

If symmetry is to have ever existed,  and,  you return to the original state, problems enter the picture because you are introducing "some thing" to the system? For example, you can only back up so far. The question is what does this fifth dimensional perspective allow you? You know Gravity and light have been joined?

Yes, when you change visual perspective, what does a line look like, as in viewing a cylindrical system, with such a viscosity?

You cannot show where droplets were injected, and to go beyond that point of submersion, an example of what begin in rotation would on reversibility, happen same. So, something is missing?

 My question is: could you ever learn the answer to an otherwise-intractable computational problem by jumping into a black hole?

Entanglement,  is not an option in such a system ? As is FTL, medium dependent? Changing viscosity rates show speed of light variance?

I want to discuss today reflect a different perspective: one that regards computation as no more “arbitrary” than other central concepts of mathematics, and indeed, as something that shows up even in contexts that seem incredibly remote from it, from the AdS/CFT correspondence to turbulent fluid flow. See:Recent papers by Susskind and Tao illustrate the long reach of computation

Fluid Velocity Profile
Visualization above,  has specific destination in relation to specificity of drop,  as to show distance from center?

Kaluza-Klein theory is a model which unifies classical gravity and electromagnetism. It was discovered by the mathematician Theodor Kaluza that if general relativity is extended to a five-dimensional spacetime, the equations can be separated out into ordinary four-dimensional gravitation plus an extra set, which is equivalent to Maxwell's equations for the electromagnetic field, plus an extra scalar field known as the "dilaton". Oskar Klein proposed that the fourth spatial dimension is curled up with a very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies.

Kaluza-Klein theory can be extended to cover the other fundamental forces - namely, the weak and strong nuclear forces - but a straightforward approach, if done using an odd dimensional manifold runs into difficulties involving chirality. The problem is that all neutrinos appear to be left-handed, meaning that they are spinning in the direction of the fingers of the left hand when they are moving in the direction of the thumb. All anti-neutrinos appear to be right-handed. Somehow particle reactions are asymmetric when it comes to spin and it is not straightforward to build this into a Kaluza-Klein theory since the extra dimensions of physical space are symmetric with respect to left-hand spinning and r-hand spinning particles.
Also to further speculate.....

Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies. (This occurs because electromagnetism is a U(1) symmetry theory and U(1) is simply the group of rotations around a circle).

Placing comment here until approved  or not approved.

Instituting a experimental argument is necessary, when t comes to symmetry in the realtor of viscosity and entanglement? Light in Ftl is medium dependent?

This sets up analogue example of the question of firewalls as to imply Black holes and information?

Layman wondering.


See also:

Friday, October 04, 2013

A Deeper Search for Building Blocks of Nature

National High Magnetic Field Laboratory
The strange properties of superconducting materials called “cuprates” (bismuth strontium calcium copper oxide is shown here), which cannot be described by known quantum mechanical methods, may correspond to properties of black holes in higher dimensions.
According to modern quantum theory, energy fields permeate the universe, and flurries of energy in these fields, called “particles” when they are pointlike and “waves” when they are diffuse, serve as the building blocks of matter and forces. But new findings suggest this wave-particle picture offers only a superficial view of nature’s constituents. See:

Signs of a Stranger, Deeper Side to Nature’s Building Blocks 
By: Natalie Wolchover, Quanta Magazine, July 1, 2013

Friday, May 07, 2010

Quark Gluon Plasma (QGP)

No matter what you call it, though, that substance and others similar to it could be the most-perfect fluids in existence because they have ultra-low viscosity, or resistance to flow, said Dam Thanh Son, an associate physics professor in the Institute for Nuclear Theory at the University of Washington.

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions - or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions - behaves as if it has a viscosity near zero, the lowest yet measured.

2. A quark-gluon plasma, with the same quarks, but with "bags" disappeared and gluons flying around in their place. SeeJust in case anyone forgot...
One of the things I worked a lot on in earlier months this year (and late ones of last year) was the lead article in a cluster of articles that has appeared in the last few days in May’s special edition of Physics Today. They are sort of departmental-colloquium-level articles, so for a general physics audience, more or less. It’s about some of the things I’ve told you about here in the past (see e.g. here and here), concerning exciting and interesting applications of string theory to various experiments in nuclear physics, as well as atomic and condensed matter physics (although we do not have an article on the latter in this cluster). I had a fun time working with Peter Steinberg on the article and remain grateful to him for getting us all together in the first place to talk about this topic way back in that AAAS symposium of 2009. It was there that Steven Blau of Physics Today got the excellent idea to approach us all to do an article, which resulted in this special issue....See: The Search For Perfection…

Clifford gives a link to the PDF version of the online article "What black holes teach about strongly coupled particles" I am not sure the article is free anymore as it now requires registry. Clifford has adjusted to this by giving "his" pdf link.

Cover: In contrast with everyday liquids such as the oil and water shown on the cover, a so-called perfect fluid has exceedingly low shear viscosity. But unlike a superfluid, the perfect fluid is not in a single quantum state. Three articles in this issue explore the connection to string theory (beginning on page 29) and the possible existence of perfect fluids in two very different regimes: ultracold fermionic atoms (page 34) and ultrahot nuclear matter (page 39). (Photo by Stefan Kaben.)


See Also:

Physics Bits and Bites

The quest for Quantum Ideal liquids

Tuesday, February 16, 2010

Article From New York Times and More

Brookhaven National Laboratory

HOT A computer rendition of 4-trillion-degree Celsius quark-gluon plasma created in a demonstration of what scientists suspect shaped cosmic history.

In Brookhaven Collider, Scientists Briefly Break a Law of Nature

The Brookhaven scientists and their colleagues discussed their latest results from RHIC in talks and a news conference at a meeting of the American Physical Society Monday in Washington, and in a pair of papers submitted to Physical Review Letters. “This is a view of what the world was like at 2 microseconds,” said Jack Sandweiss of Yale, a member of the Brookhaven team, calling it, “a seething cauldron.”

Among other things, the group announced it had succeeded in measuring the temperature of the quark-gluon plasma as 4 trillion degrees Celsius, “by far the hottest matter ever made,” Dr. Vigdor said. That is 250,000 times hotter than the center of the Sun and well above the temperature at which theorists calculate that protons and neutrons should melt, but the quark-gluon plasma does not act the way theorists had predicted.

Instead of behaving like a perfect gas, in which every quark goes its own way independent of the others, the plasma seemed to act like a liquid. “It was a very big surprise,” Dr. Vigdor said, when it was discovered in 2005. Since then, however, theorists have revisited their calculations and found that the quark soup can be either a liquid or a gas, depending on the temperature, he explained. “This is not your father’s quark-gluon plasma,” said Barbara V. Jacak, of the State University at Stony Brook, speaking for the team that made the new measurements.

It is now thought that the plasma would have to be a million times more energetic to become a perfect gas. That is beyond the reach of any conceivable laboratory experiment, but the experiments colliding lead nuclei in the Large Hadron Collider outside Geneva next winter should reach energies high enough to see some evolution from a liquid to a gas.
See more at above link.


Violating Parity with Quarks and Gluons
by Sean Carroll of Cosmic Variance
This new result from RHIC doesn’t change that state of affairs, but shows how quarks and gluons can violate parity spontaneously if they are in the right environment — namely, a hot plasma with a magnetic field.

So, okay, no new laws of physics. Just a much better understanding of how the existing ones work! Which is most of what science does, after all


Quark–gluon plasma

From Wikipedia, the free encyclopedia

A QGP is formed at the collision point of two relativistically accelerated gold ions in the center of the STAR detector at the relativistic heavy ion collider at the Brookhaven national laboratory.

A quark-gluon plasma (QGP) or quark soup[1] is a phase of quantum chromodynamics (QCD) which exists at extremely high temperature and/or density. This phase consists of (almost) free quarks and gluons, which are the basic building blocks of matter. Experiments at CERN's Super Proton Synchrotron (SPS) first tried to create the QGP in the 1980s and 1990s: the results led CERN to announce indirect evidence for a "new state of matter"[2] in 2000. Current experiments at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) are continuing this effort.[3] Three new experiments running on CERN's Large Hadron Collider (LHC), ALICE,[4] ATLAS and CMS, will continue studying properties of QGP.


  • 1 General introduction

    • 1.1 Why this is referred to as "plasma"
    • 1.2 How the QGP is studied theoretically
    • 1.3 How it is created in the lab
    • 1.4 How the QGP fits into the general scheme of physics
  • 2 Expected properties

    • 2.1 Thermodynamics
    • 2.2 Flow
    • 2.3 Excitation spectrum
  • 3 Experimental situation
  • 4 Formation of quark matter
  • 5 See also
  • 6 References
  • 7 External links

General introduction

The quark-gluon plasma contains quarks and gluons, just as normal (baryonic) matter does. The difference between these two phases of QCD is that in normal matter each quark either pairs up with an anti-quark to form a meson or joins with two other quarks to form a baryon (such as the proton and the neutron). In the QGP, by contrast, these mesons and baryons lose their identities and dissolve into a fluid of quarks and gluons.[5] In normal matter quarks are confined; in the QGP quarks are deconfined.
Although the experimental high temperatures and densities predicted as producing a quark-gluon plasma have been realized in the laboratory, the resulting matter does not behave as a quasi-ideal state of free quarks and gluons, but, rather, as an almost perfect dense fluid.[6] Actually the fact that the quark-gluon plasma will not yet be "free" at temperatures realized at present accelerators had been predicted already in 1984 [7] as a consequence of the remnant effects of confinement. 

Why this is referred to as "plasma"

A plasma is matter in which charges are screened due to the presence of other mobile charges; for example: Coulomb's Law is modified to yield a distance-dependent charge. In a QGP, the color charge of the quarks and gluons is screened. The QGP has other analogies with a normal plasma. There are also dissimilarities because the color charge is non-abelian, whereas the electric charge is abelian. Outside a finite volume of QGP the color electric field is not screened, so that volume of QGP must still be color-neutral. It will therefore, like a nucleus, have integer electric charge.

How the QGP is studied theoretically

One consequence of this difference is that the color charge is too large for perturbative computations which are the mainstay of QED. As a result, the main theoretical tools to explore the theory of the QGP is lattice gauge theory. The transition temperature (approximately 175 MeV) was first predicted by lattice gauge theory. Since then lattice gauge theory has been used to predict many other properties of this kind of matter. The AdS/CFT correspondence is a new interesting conjecture allowing insights in QGP.

How it is created in the lab

The QGP can be created by heating matter up to a temperature of 2×1012 kelvin, which amounts to 175 MeV per particle. This can be accomplished by colliding two large nuclei at high energy (note that 175 MeV is not the energy of the colliding beam). Lead and gold nuclei have been used for such collisions at CERN SPS and BNL RHIC, respectively. The nuclei are accelerated to ultrarelativistic speeds and slammed into each other while Lorentz contracted. They largely pass through each other, but a resulting hot volume called a fireball is created after the collision. Once created, this fireball is expected to expand under its own pressure, and cool while expanding. By carefully studying this flow, experimentalists hope to put the theory to test.

How the QGP fits into the general scheme of physics

QCD is one part of the modern theory of particle physics called the Standard Model. Other parts of this theory deal with electroweak interactions and neutrinos. The theory of electrodynamics has been tested and found correct to a few parts in a trillion. The theory of weak interactions has been tested and found correct to a few parts in a thousand. Perturbative aspects of QCD have been tested to a few percent. In contrast, non-perturbative aspects of QCD have barely been tested. The study of the QGP is part of this effort to consolidate the grand theory of particle physics.
The study of the QGP is also a testing ground for finite temperature field theory, a branch of theoretical physics which seeks to understand particle physics under conditions of high temperature. Such studies are important to understand the early evolution of our universe: the first hundred microseconds or so. While this may seem esoteric, this is crucial to the physics goals of a new generation of observations of the universe (WMAP and its successors). It is also of relevance to Grand Unification Theories or 'GUTS' which seek to unify the four fundamental forces of nature.

Expected properties


The cross-over temperature from the normal hadronic to the QGP phase is about 175 MeV, corresponding to an energy density of a little less than 1 GeV/fm3. For relativistic matter, pressure and temperature are not independent variables, so the equation of state is a relation between the energy density and the pressure. This has been found through lattice computations, and compared to both perturbation theory and string theory. This is still a matter of active research. Response functions such as the specific heat and various quark number susceptibilities are currently being computed.


The equation of state is an important input into the flow equations. The speed of sound is currently under investigation in lattice computations. The mean free path of quarks and gluons has been computed using perturbation theory as well as string theory. Lattice computations have been slower here, although the first computations of transport coefficients have recently been concluded. These indicate that the mean free time of quarks and gluons in the QGP may be comparable to the average interparticle spacing: hence the QGP is a liquid as far as its flow properties go. This is very much an active field of research, and these conclusions may evolve rapidly. The incorporation of dissipative phenomena into hydrodynamics is another recent development that is still in an active stage.

Excitation spectrum

Does the QGP really contain (almost) free quarks and gluons? The study of thermodynamic and flow properties would indicate that this is an over-simplification. Many ideas are currently being evolved and will be put to test in the near future. It has been hypothesized recently that some mesons built from heavy quarks (such as the charm quark) do not dissolve until the temperature reaches about 350 MeV. This has led to speculation that many other kinds of bound states may exist in the plasma. Some static properties of the plasma (similar to the Debye screening length) constrain the excitation spectrum.

Experimental situation

Those aspects of the QGP which are easiest to compute are not the ones which are the easiest to probe in experiments. While the balance of evidence points towards the QGP being the origin of the detailed properties of the fireball produced in the RHIC, this is the main barrier which prevents experimentalists from declaring a sighting of the QGP. For a summary see 2005 RHIC Assessment.
The important classes of experimental observations are

Formation of quark matter

In April 2005, formation of quark matter was tentatively confirmed by results obtained at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC). The consensus of the four RHIC research groups was that they had created a quark-gluon liquid of very low viscosity. However, contrary to what was at that time still the widespread assumption, it is yet unknown from theoretical predictions whether the QCD "plasma", especially close to the transition temperature, should behave like a gas or liquid[8]. Authors favoring the weakly interacting interpretation derive their assumptions from the lattice QCD calculation, where the entropy density of quark-gluon plasma approaches the weakly interacting limit. However, since both energy density and correlation shows significant deviation from the weakly interacting limit, it has been pointed out by many authors that there is in fact no reason to assume a QCD "plasma" close to the transition point should be weakly interacting, like electromagnetic plasma (see, e.g., [9]).

See also


External links

Saturday, September 19, 2009

Macroscopic Similarities in a Microscopic World

Berkeley Lab Technology Dramatically Speeds Up Searches of Large DatabasesJon Bashor

In the world of physics, one of the most elusive events is the creation and detection of “quark-gluon plasma,” the theorized atomic outcome of the “Big Bang” which could provide insight into the origins of the universe. By using experiments that involve millions of particle collisions, researchers hope to find unambiguous evidence of quark-gluon plasma.

It's not just about "mathematical abstraction" but of seeing what good it can be used for. One can be in denial about the prospects but while it gives perspective to current situations, in that it helps to direct thinking forward instead feeling as if "you are just floating in space without being able to move."

Helpless are we? Not considering flapping one's wings?

Imagine indeed then,  trying to orientate direction toward the spacecraft when "floating in space" seems like having to attempt to ride a bicycle for the first time, so one should  know we must balance ourselves while doing the appropriate movements directed to where we want to go. It's something that has to be learn in theoretical enterprise while still held to earth's environ?

There might be a middle way. String theory's mathematical tools were designed to unlock the most profound secrets of the cosmos, but they could have a far less esoteric purpose: to tease out the properties of some of the most complex yet useful types of material here on Earth.

Both string theorists and condensed matter physicists - those studying the properties of complex matter phases such as solids and liquids - are enthused by the development. "I am flabbergasted," says Jan Zaanen, a condensed matter theorist from the University of Leiden in the Netherlands. "The theory is calculating precisely what we are seeing in experiments."
See:What string theory is really good for

So how has this helped the idea of "minimum length?"

Using the anti–de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid. See:String Theory, Quantum Phase Transitions, and the Emergent Fermi Liquid
So we have a beginning here for consideration within the frame work of Condense matter theorist state of existence? String theory is working along side of to direct the idea of matter formation?


Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

Proving that under certain conditions the quark-gluon plasma behaves according to such calculations is an exciting discovery for physicists, as it brings them a little closer to understanding how matter behaves at very small scales. But the challenge remains to determine the properties of the plasma under other conditions.

"We want to measure when the quark-gluon plasma behaves like a perfect fluid with zero viscosity, and when it doesn't," says Lauret. "When it doesn't match our calculations, what parameters do we have to change? If we can put everything together, we might have a model that reproduces everything we see in our detector."
See:Probing the Perfect Liquid with the STAR Grid

Looking back in time toward the beginning of our universe has been one of the things that have been occupying my time as I look through experimental procedures that have been developed. While LHC  provides a template of all the historical drama of science put forward,  it is also a platform in my mind for pushing forward perspective from "a beginning of time scenario" that helps us identify what happens in that formation. Helps us to orientate space and what happens to it.

It provides for me a place where we can talk about a large scale situation in terms of the universe as to what it contains to help motivate this universe to become what it is.

Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in an 1897 painting by Paul Gauguin: D'ou venons-nous? Que sommes-nous? Ou allons-nous? "Where do we come from? What are we? Where are we going?"
See here for more information.

So how did this process help orientate the things that were brought forward under the idea that the universe is a "cosmological box" that people want to talk about, while in my mind ,it became much more flexible topic when Venezianno began to talk about what came before. What existed outside that box. Abstractly, the box had six faces, to which direction of possibilities became part of the depth of this situation. It was a matter indeed of thinking outside the box.

I know that for some,  why waste one's time, but for me it is the motivator( not God as a creator, but of what actually propels this universe) and to what can exist now that draws my attention. It has been ever so slightly pushed "back in time" to see that the universe began with "microscopic processes that defines the state of the state of the universe in the way it is now." The LHC should be able to answer this although it is still restricted by the energy valuation given to this process.

A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Theoretical physicists have now used string theory to describe the quantum-critical state of electrons that can lead to high-temperature superconductivity. (Credit: Mai-Linh Doan / Courtesy of Wikimedia Commons) See:

Physical Reality Of String Theory Shown In Quantum-critical State Of Electrons

Quantum soup

But now, Zaanen, together with his colleagues Cubrovic and Schalm, are trying to change this situation, by applying string theory to a phenomenon that physicists, including Zaanen, have for the past fifteen years been unable to explain: the quantum-critical state of electrons. This special state occurs in a material just before it becomes superconductive at high temperature. Zaanen describes the quantum-critical state as a 'quantum soup', whereby the electrons form a collective independent of distances, where the electrons exhibit the same behaviour at small quantum mechanical scale or at macroscopic human scale.
See  Also:

Fermions and the AdS/CFT correspondence: quantum phase transitions and the emergent Fermi-liquid

A central mystery in quantum condensed matter physics is the zero temperature quantum phase transition between strongly renormalized Fermi-liquids as found in heavy fermion intermetallics and possibly high Tc superconductors. Field theoretical statistical techniques are useless because of the fermion sign problem, but we will present here results showing that the mathematics of string theory is capable of describing fermionic quantum critical states. Using the Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence to relate fermionic quantum critical fields to a gravitational problem, we compute the spectral functions of fermions in the field theory. Deforming away from the relativistic quantum critical point by increasing the fermion density we show that a state emerges with all the features of the Fermi-liquid. Tuning the scaling dimensions of the critical fermion fields we find that the quasiparticle disappears at a quantum phase transition of a purely statistical nature, not involving any symmetry change. These results are obtained by computing the solutions of a classical Dirac equation in an AdS space time containing a Reissner-Nordstrom black hole, where the information regarding Fermi-Dirac statistics in the field theory is processed by quasi-normal Dirac modes at the outer horizon.

Wednesday, July 29, 2009

What holes?

Steven Weinberg visiting the ATLAS cavern accompanied by Peter Jenni see: Steven Weinberg visits CERN

So the understanding "is" that as Steven portrays as been spoken of before by Clifford or by associates in proximity, that his views reveal the status from which the top down has located this experimental validation as to what is self evidential with regard to the Aristotelian arch. The QGP.

For those who understand what I am saying, will be too understand the unification process of the deductive/inductive approach toward thinking in this exercise.

Unfortunately, the repair necessitates a partial warm-up of both sectors. This involves the end sub-sector being warmed to room temperature, while the adjacent sub-sector "floats" in temperature and the remainder of the sector is kept at 80 K. As the leak is from the helium circuit to the insulating vacuum, the repair work will have no impact on the vacuum in the beam pipe. However the intervention will have an impact on the schedule for the restart. It is now foreseen that the LHC will be closed and ready for beam injection by mid-November.See: The latest from the LHC
Bold added for emphasis by me.

So indeed there is the physical apparatus for experimentation in effective methods to discernment that needs physical correction and in no ways speaks to the holes per say, but rely on the understanding that such a "theoretical concern" is by what is revealed in extremities of cold and heat, that can be correlated same.

One of my interests is to what is the "loss of energy" that we might understand where it has gone, that we say "dimensional significance" to explain this loss fully understanding the quantity and energy value first assign the experiment.

So how and what is this loss attributed too?

Some thinking here in terms of "Dirac's hole" to think that if "i" is introduced in the axiom(matrice) then it presents the geometrical necessity of movement in non euclidean thinking, as to movement of dynamical processes?

Accretion Disk

So I speculated as to the nature of "continuity of expression" that arises from my cosmological view of "birth of this universe." To say that in this example, this universe was produced "from a hole" that allowed transmission of energy to move "through a conduit" to this side of the universe in expression. Just as dimensional relation may be perceived of, as in "energy loss" from it's original state as in the LHC calculations.

Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

Proving that under certain conditions the quark-gluon plasma behaves according to such calculations is an exciting discovery for physicists, as it brings them a little closer to understanding how matter behaves at very small scales. But the challenge remains to determine the properties of the plasma under other conditions.

"We want to measure when the quark-gluon plasma behaves like a perfect fluid with zero viscosity, and when it doesn't," says Lauret. "When it doesn't match our calculations, what parameters do we have to change? If we can put everything together, we might have a model that reproduces everything we see in our detector."
See:Probing the Perfect Liquid with the STAR Grid

So, fragmented images arise in my mind as to the "collision process in that moment" to reveal the continuance of the universe "from black holes." These local views toward reductionist methods as in "top down" toward located experiential validation point is "self evident," as to explain, where this process started.

So questions arise as to what is fundamental about energy that it could be in one state and exist as a "momentum expressive view" as to changing to this universe in relation? It means that it had to exist "prior." How many ways can it then be expressed from and about, that it could exist in the one schematic form, to become, all that it is afterward in physical form?

Without this intent, it could have not manifested as otherwise, and is lost to all probable accounting, so that there was no way to ascertain that humanity could exist this way as it does, or, that the universe could be as it is.

Dimensional significance is related to architectural geometry realized as this energy changes "to form" yet in uncertainty as to say how it will become this way?

This does not lesson my views on what exists first "as a pattern" could be surmised to be energy in it's first form of imagery. To have it become, and in this way ascertain to believe, that we are indeed in control of our destiny as to say that the "formative images of mind" are therefor patterns for the future.

Indicative of "societal values" by our choosing.

Friday, July 25, 2008

The Extra Dimensions in the LHC

String Theorists, for a million bucks, do you think you can answer "the question" and it's applicability?

Now it should be clear here that while I speak of extra dimensions I am referring to that energy that is not accountable, "after the collision process and particle identifications have been calculated."

For the first time the LHC reaches temperatures colder than outer space

Geneva, 10 April 2007. The first sector of CERN1's Large Hadron Collider (LHC) to be cooled down has reached a temperature of 1.9 K (–271°C), colder than deep outer space! Although just one-eighth of the LHC ring, this sector is the world’s largest superconducting installation. The entire 27–kilometre LHC ring needs to be cooled down to this temperature in order for the superconducting magnets that guide and focus the proton beams to remain in a superconductive state. Such a state allows the current to flow without resistance, creating a dense, powerful magnetic field in relatively small magnets. Guiding the two proton beams as they travel nearly the speed of light, curving around the accelerator ring and focusing them at the collision points is no easy task. A total of 1650 main magnets need to be operated in a superconductive state, which presents a huge technical challenge. "This is the first major step in the technical validation of a full-scale portion of the LHC," explained LHC project leader Lyndon Evans.

There are three parts to the cool down process, with many tests and intense checking in between. During the first phase, the sector is cooled down to 80 K, slightly above the temperature of liquid nitrogen. At this temperature the material will have seen 90% of the final thermal contraction, a 3 millimetre per metre shrinkage of steel structures. Each of the eight sectors is about 3.3 kilometres long, which means shrinkage of 9.9 metres! To deal with this amount of shrinkage, specific places have been designed to compensate for it, including expansion bellows for piping elements and cabling with some slack. Tests are done to make sure no hardware breaks as the machinery is cooled.

The second phase brings the sector to 4.5 K using enormous refrigerators. Each sector has its own refrigerator and each of the main magnets is filled with liquid helium, the coolant of choice for the LHC because it is the only element to be in a liquid state at such a low temperature.

The final phase requires a sophisticated pumping system to help bring the pressure down on the boiling Helium and cool the magnets to 1.9 K. To achieve a pressure of 15 millibars, the system uses both hydrodynamic centrifugal compressors operating at low temperature and positive-displacement compressors operating at room temperature. Cooling down to 1.9 K provides greater efficiency for the superconducting material and helium's cooling capacity. At this low temperature helium becomes superfluid, flowing with virtually no viscosity and allowing greater heat transfer capacity.

“It's exciting because for more than ten years people have been designing, building and testing separately each part of this sector and now we have a chance to test it all together for the first time,” said Serge Claudet, head of the Cryogenic Operation Team. For more information and to see regular updates, see

The conditions are now established to allow testing of all magnets in this sector to their ultimate performance.

I am not going to go into the relevance here but to describe how "I speculate" the "extra energy is lost" while delivering the expected results of the LHC microscope in it's efforts.

This is based on the Navier–Stokes existence and smoothness that "may be" responsible for this loss. The understanding as I have come to see it is that the QGP by it's very nature is conclusively reached it total state, and that by reaching it, it brought in line, with the Superconductors relations. The principal here that a relativistic conditon is arrived at in the super fluid condition that I perceive is, in relation to the aspect of the Helium used to cool the LHC

Navier-Stokes Equation

Waves follow our boat as we meander across the lake, and turbulent air currents follow our flight in a modern jet. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to the Navier-Stokes equations. Although these equations were written down in the 19th Century, our understanding of them remains minimal. The challenge is to make substantial progress toward a mathematical theory which will unlock the secrets hidden in the Navier-Stokes equations.

Thursday, April 12, 2007

The CrossOver Point within the Perfect Fluid?

I had been following this research because of what I had been trying to understand when we take our understanding down to a certain level. That level is within the context of us probing the collision process for evidence of "some new physics" that we had not seen before.

Evidence for Neutrino Oscillations from the LSND Experiment
One of the only ways to probe small neutrino masses is to search for neutrino oscillations, where a neutrino of one type (e.g. numubar ) spontaneously transforms into a neutrino of another type (e.g. nuebar ) For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. The probability for 2-flavor neutrino oscillations can then be expressed as P=sin2(2theta) sin2(1.27 m2L/E) , where theta is the mixing angle, m2 is the difference in neutrino masses squared in eV2, L is the neutrino distance in meters, and E is the neutrino energy in MeV. In 1995 the LSND experiment [1] published data showing candidate events that are consistent with numubar->nuebar oscillations. [2] Additional data are reported here that provide stronger evidence for numubar->nuebar oscillations [3] as well as evidence for numu->nue oscillations. [4] The two oscillation searches have completely different backgrounds and systematics from each other.

What valuation of this process allows us to think that while speaking to "probing this perfect fluid" that we had not discovered some mechanism within it, that allows us to see Coleman Mandula effects being behind, as a geometrical unfoldment from one state into another?

If we had looked at the Genus 1 figure then what avenue would help us discern what could come from the string theory landscape and the "potential hill" discerned from the blackhole horizon? What tunnelling effect could go past the hill climbers and valley crossers to know that you could cut "right through the hill?"

MiniBooNE opens the box

BATAVIA, IllinoisScientists of the MiniBooNE1 experiment at the Department of Energy's Fermilab2 today (April 11) announced their first findings. The MiniBooNE results resolve questions raised by observations of the LSND3 experiment in the 1990s that appeared to contradict findings of other neutrino experiments worldwide. MiniBooNE researchers showed conclusively that the LSND results could not be due to simple neutrino oscillation, a phenomenon in which one type of neutrino transforms into another type and back again.

The announcement significantly clarifies the overall picture of how neutrinos behave.

So while I am looking for some indications as I did in the strangelet case, as, evidence of this crossover, this had to have some relation to how we seen the neutrinos in development. This was part of the development as we learnt of the history of John Bahcall.

John Bahcall 1934 to 2005 See also "John Bahcall and the Neutrinos"

Plato Apr 11th, 2007 at 8:47 pm

the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever.” See here

No cross over point? What role would Navier Stokes play in this?
See here

This does not minimize the work we see of Gran Sasso in relation to the LHC project.

Honestly, I do not know how someone who could work on the project, could not know what they were working on? It as if the "little parts" of the LHC project only cater to the worker Bees working just aspects of the project and their specializations.

Whilst now, you go way up and overlook this project. To see the whole context measured within that "one tiny big bang moment." Trust me when I say, we shall not minimize the effect of calling the collision process as "one tiny moment," for you may never see the whole context of this project being developed for this "one thing."

I did not realize the shortcomings that scientists place on themselves when they do specialize. I just assumed they would know as much as I did and see the whole project? I do not say this unkindly, just that it is a shock to me that one could work the string theory models and not realize what they are working on. I have heard even Jacques say there is no connection and listening to Peter Woit, I was equally dismayed that he did not realize what the string theory model was actually doing as it found it's correlation in the developing views of how we look at the moments of creation.

Bigger is better if you’re searching for smaller

Neutrinos may be in CERN's Future

The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.
See "CERN and Future Experiments"

Plato Apr 12th, 2007 at 7:31 am

I think my comment on previous post of looking for the perfect fluid should have been here.

Also I do not think this changes how we look at string theory as a model probing the perfect fluid, and "the understanding" of developing a mechanism for this "cross over point?"

Topologically, how would this have been revealed in the string theory landscape??
See here and know that Clifford again deleted the short little post above. The point is I think for some reason once I mention string theory or evn M theory in relation to what is transpiring in the views of model development he doe not like this and would be support by Jacques as well.

That would be my job to convince them and anyone else that hold their views that taking our view to the microseconds, there is a definite relation to the timeline whether you agree with this or not. By introducing "the point of the cross over" you in effect have taken the model and presented it as part of the mechanism for this universe and effectively given new meaning to the "string theory landscape."

You may want it to be "background independent" like Lee wants it to be, but if you view the background as a oscillatory one, then any idea as configured to the mass of any particle, then you have define this particle as a energy relation? So Lee does not like the oscillatory universe?

See "Finiteness of String Theory and Mandelstam"

It is contained "within the moment" of the creation of this universe, yet, we do not know what design this particle is to be in context of the microscopic view of geometrical topologically finishes? As the Genus 1 figure and as an expression of this universe? You had to know what was lying in those valleys, and the potentials of expression, and I relay that in the blackhole horizon as a potential hill.

The time has come for some changes in this blog and I have been thinking about moving on. While a layman, I do not like to be treated like a fool. Maybe not educated fully and with some work to do, but never as a fool.

Tuesday, April 03, 2007

The Elixir of the Bee Community

You should know that that the names of the Bee people have their names protected, to protect the community at large. Some larger human species, like to use the benefits of this society, without recognizing the constructive efforts that goes into this elixir Production.

Marc D. Hauser:

We know that that kind of information is encoded in the signal because people in Denmark have created a robotic honey bee that you can plop in the middle of a colony, programmed to dance in a certain way, and the hive members will actually follow the information precisely to that location. Researchers have been able to understand the information processing system to this level, and consequently, can actually transmit it through the robot to other members of the hive.

See Bumblebee Wing Rotations and Dancing

Many times people have used Ant world to illustrate their ideas, but the time has come, that the relationship to perspective dynamics at that level should think about the vast literature of Bee people.

The second of five Lagrangian equilbrium points, approximately 1.5 million kilometers beyond Earth, where the gravitational forces of Earth and Sun balance to keep a satellite at a nearly fixed position relative to Earth.

See Second of Five Lagrangian Equilibrium Points

One should not think these people have been disassociated from reality, and that it has only been our ignorance of the economics and flight patterns, that we failed to see the dynamical community that bee propagation goes through, in order to continue it's rich development. The elixir production is coming out of that community.

There are two reasons that having mapped E8 is so important. The practical one is that E8 has major applications: mathematical analysis of the most recent versions of string theory and supergravity theories all keep revealing structure based on E8. E8 seems to be part of the structure of our universe.

The other reason is just that the complete mapping of E8 is the largest mathematical structure ever mapped out in full detail by human beings. It takes 60 gigabytes to store the map of E8. If you were to write it out on paper in 6-point print (that's really small print), you'd need a piece of paper bigger than the island of Manhattan. This thing is huge.

See Solidification of Geometrical Presence

Flower pollination is a interesting thing having considered the world that the Bee people live in. After all, the dynamics and travel used, one could not help being enamoured with the naturalness with which one may try to reproduce in human mechanistic movement, that the Bee people live and breathe.

Humanistic intelligences is a larger format, to what they do in that Bee community?

Cell construction provides for the further propagation of the community, but no where do the Bee people give the particulates of the cell construction? Humanistic intelligences only see the community with regards to the Bee movements :)The Bee people have a greater depth to what is seen.

Observing the community at large, the Bee people have much more to present then thinking just in the way they work. Who is Navier Stokes of the humanistic intelligences to think only he could reveal anomalistic perception in the nature of viscosity, not to think there is relativistic conditions that the Bee people bring to reductionism views in physics?

Worker bees perform a host of tasks from cleaning the hive cells to looking after the larvae
The workers have a variety of tasks to perform – some collect nectar from flowers, others pollen, some are engaged in constructing new combs, or looking after the developing larvae, some perform the duty of cleaning the cells or feeding the larvae on special secretion that they regurgitate from their mouth parts. In these insects the exact task of any individual depends largely on its age, although there is a certain flexibility, depending on the requirements of the hive.

So I've taken a different tack here. If it is so hard for the community at large to comprehend that extra dimensional thinking then there has to be some way in which we as lay people can envision the acrobatics of a busy bee and their flight plans? What the community is all about. Who is doing what?

How many dimensions are there?

Consider ants crawling on a tabletop. In their daily experience, they can explore only 2 dimensions, those of the table surface. They may see a bee up flying, or occasionally landing on the table top, but that 3rd dimension is something they can only see or imagine, not experience. Perhaps we are in an analogous situation. Instead of a tabletop, we live in a 3-dimensional space called 3-brane (a name generalizing 2-brane, i.e., membrane). For some reason, we (i.e., atoms, molecules, photons etc.) are stuck in this 3-brane, even though there are 6 additional dimensions out there. Gravity, like the bee, can go everywhere. We call this the brane world, a rather natural phenomenon in superstring theory. At the moment, physicists are working hard to understand this scenario better and to find ways to experimentally test this idea.

The Bee people had graduated from the world of the ant people, jsut by their evolutionary timeline. They were "much more visionary" then the ant people. Because they could leave their three dimensional world of the table top, and pop into ant world's frame of reference. Ant people were never the wiser. Just that, Bee people existed.

Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.

See Wolf-Rayet star

Brane theory development needed a boost from the Bee people. Not only now do we understand the "dynamical thinking that goes with the Bee's flight patterns," we are now thinking, hey, "can these things apply" to the current solutions the humanistic intelligences persevere to unfold in their space travels?

Not just "our waist lines" as some might think in regards to "lensing" and the circles we apply in "computerize efforts." The range of territory of the Bee's community is well considered?

Monday, March 12, 2007

Isostatic Adjustment is Why Planets are Round?

Conclusion:The state of mind of the observer plays a crucial role in the perception of time.Einstein
See here.

If we thought of the "Colour of Gravity" posted here, what values could you assign any materials that arise from the centre out? Gravity would have it's way with these materials for us to assign them to their unique ordering?

The Power of Myth With Bill Moyers, by Joseph Campbell , Introduction that Bill Moyers writes,

"Campbell was no pessimist. He believed there is a "point of wisdom beyond the conflicts of illusion and truth by which lives can be put back together again." Finding it is the "prime question of the time." In his final years he was striving for a new synthesis of science and spirit. "The shift from a geocentric to a heliocentric world view," he wrote after the astronauts touched the moon, "seemed to have removed man from the center-and the center seemed so important...

That we may say, the minerals on the moon have been assigned their valuation too? I would say it's the colour of gravity that we had assigned all of humanities thoughts and where is man/woman's centre?

Image: NASA/JPL-
Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes.

By using Grace here, and the way we look at earth now, we get a better sense of what the actual shape of the earth is. WE had all thought it looked so round from space, that under a "time variable measure" we knew better. We knew that the variations in topographical locations would reveal something unique in relation to gravity. It took Grace to do that

Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."
See more here

The Moon Clementine-Color ratio image of Aristarchus Crater on the Moon-Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)

It is not so far fetched for the mind to think of the planet in question, as to it's roundness, or, the moon in relation to how we see those impact craters on it's surface. "The moon" quite revealing in the mineralogical decor for us. So there are two things to consider here.

From the "boundary" of the planet "inward" and from the "centre" of the planet "outward."