Pages

Showing posts with label Tscan. Show all posts
Showing posts with label Tscan. Show all posts

Friday, July 06, 2012

The Bolshoi simulation

A virtual world?

 The more complex the data base the more accurate one's simulation is achieved. The point is though that you have to capture scientific processes through calorimeter examinations just as you do in the LHC.

So these backdrops are processes in identifying particle examinations as they approach earth or are produced on earth. See Fermi and capture of thunder storms and one might of asked how Fermi's picture taking would have looked had they pointed it toward the Fukushima Daiichi nuclear disaster?

So the idea here is how you map particulates as a measure of natural processes? The virtual world lacks the depth of measure with which correlation can exist in the natural world? Why? Because it asks the designers of computation and memory to directly map the results of the experiments. So who designs the experiments to meet the data?

 How did they know the energy range that the Higg's Boson would be detected in?





The Bolshoi simulation is the most accurate cosmological simulation of the evolution of the large-scale structure of the universe yet made ("bolshoi" is the Russian word for "great" or "grand"). The first two of a series of research papers describing Bolshoi and its implications have been accepted for publication in the Astrophysical Journal. The first data release of Bolshoi outputs, including output from Bolshoi and also the BigBolshoi or MultiDark simulation of a volume 64 times bigger than Bolshoi, has just been made publicly available to the world's astronomers and astrophysicists. The starting point for Bolshoi was the best ground- and space-based observations, including NASA's long-running and highly successful WMAP Explorer mission that has been mapping the light of the Big Bang in the entire sky. One of the world's fastest supercomputers then calculated the evolution of a typical region of the universe a billion light years across.

The Bolshoi simulation took 6 million cpu hours to run on the Pleiades supercomputer—recently ranked as seventh fastest of the world's top 500 supercomputers—at NASA Ames Research Center. This visualization of dark matter is 1/1000 of the gigantic Bolshoi cosmological simulation, zooming in on a region centered on the dark matter halo of a very large cluster of galaxies.Chris Henze, NASA Ames Research Center-Introduction: The Bolshoi Simulation



Snapshot from the Bolshoi simulation at a red shift z=0 (meaning at the present time), showing filaments of dark matter along which galaxies are predicted to form.
CREDIT: Anatoly Klypin (New Mexico State University), Joel R. Primack (University of California, Santa Cruz), and Stefan Gottloeber (AIP, Germany).
 THREE “BOLSHOI” SUPERCOMPUTER SIMULATIONS OF THE EVOLUTION OF THE UNIVERSE ANNOUNCED BY AUTHORS FROM UNIVERSITY OF CALIFORNIA, NEW MEXICO STATE UNIVERSITY



Pleiades Supercomputer

 MOFFETT FIELD, Calif. – Scientists have generated the largest and most realistic cosmological simulations of the evolving universe to-date, thanks to NASA’s powerful Pleiades supercomputer. Using the "Bolshoi" simulation code, researchers hope to explain how galaxies and other very large structures in the universe changed since the Big Bang.

To complete the enormous Bolshoi simulation, which traces how largest galaxies and galaxy structures in the universe were formed billions of years ago, astrophysicists at New Mexico State University Las Cruces, New Mexico and the University of California High-Performance Astrocomputing Center (UC-HIPACC), Santa Cruz, Calif. ran their code on Pleiades for 18 days, consumed millions of hours of computer time, and generating enormous amounts of data. Pleiades is the seventh most powerful supercomputer in the world.

“NASA installs systems like Pleiades, that are able to run single jobs that span tens of thousands of processors, to facilitate scientific discovery,” said William Thigpen, systems and engineering branch chief in the NASA Advanced Supercomputing (NAS) Division at NASA's Ames Research Center.
See|:NASA Supercomputer Enables Largest Cosmological Simulations



See Also: Dark matter’s tendrils revealed

Tuesday, November 01, 2011

The Developmental Jet Process

As a layman I have been going through the research of those better educated then I in order to construct a accurate syntactically written developed scientific process as I have become aware of it. This is what I have been doing for the last number of years so as to get some idea of the scientific process experimentally driven to this point.

Theoretical development is important to myself,  as well as,   the underlying quest for a foundational perspective of how we can push back perspective with regard to the timeline of the universe in expression.

This has to be experimentally written in the processes we now use to help formulate an understanding of how the universe came into being by examining local events with the distribution of the cosmological data we are accumulating. A Spherical Cow anyone?


Jets: Article Updated An update here as well, "Two-Photons: Data and Theory Disagree"

I do appreciate all those scientist who have been giving their time to educating the public. This is a big thank you for that devotion to the ideal of bringing society forward as to what we as a public are not privy too. As too, being not part of that 3% of the population who are far removed from the work being done in particle research.

Almost a year ago, I had an e-mail exchange, and planned a phone call, with Maria Spiropulu of CMS. She looked particularly excited about something and the mortals may be learning what the cause was today.

CMS turned out to be much more "aggressive" relatively to the "conservative" ATLAS detector and it has already provided us with some hints. But what they published today, in the paper called: See:
CMS: a very large excess of diphotons
***

Measurement of the Production Cross Section for Pairs of Isolated Photons in pp collisions at sqrt(s) = 7 TeV
The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 inverse picobarns is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference, Delta(phi), less than approximately 2.8. 
 ***

Tscan

Tscan ("Trivial Scanner") is an event display, traditionally called a scanner, which I developed. It is a program that shows events graphically on the computer screen.

It was designed to be simple ("trivial") internally, and to have a simple user interface. A lot of importance was given to giving the user a large choice of options to display events in many different ways.

Tscan proved to be a very useful tool for the development of fitters. A particularly useful feature is the ability to show custom data for every photpmultiplier tube (PMT). Instead of the usual time and charge, it can show expected charge, scattered light, likelihood, chi-squared difference, patches, and any other data that can be prepared in a text format.
See:Trivial Scanner

Credit: Super-Kamiokande/Tomasz Barszczak Three (or more?) Cerenkov rings

Multiple rings of Cerenkov light brighten up this display of an event found in the Super-Kamiokande - neutrino detector in Japan. The pattern of rings - produced when electrically charged particles travel faster through the water in the detector than light does - is similar to the result if a proton had decayed into a positron and a neutral pion. The pion would decay immediately to two gamma-ray photons that would produce fuzzy rings, while the positron would shoot off in the opposite direction to produce a clearer ring. Such kinds of decay have been predicted by "grand unified theories" that link three of nature's fundamental forces - the strong, weak and electromagnetic forces. However, there is so far no evidence for such decays; this event, for example, did not stand up to closer scrutiny.
See:



Update

See Also:



  • 2010 ion run: completed!
  • What Does the Higgs Jet Energy Sound Like?
  • Thursday, October 27, 2011

    ICECUBE Blogging Research Material and more

    In regards to Cherenkov Light

    Thinking outside the box See: A physicist inthe cancer lab

    Ackerman became interested in physics in middle school, reading popular science books about quantum mechanics and string theory. As an undergraduate at the Massachusetts Institute of Technology, she traveled to CERN, the European particle physics laboratory near Geneva, to work on one of the detectors at the Large Hadron Collider, the most powerful particle collider in the world. Then she spent a summer at SLAC working on BaBar, an experiment investigating the universe’s puzzling shortage of antimatter, before starting her graduate studies there in 2007.

     Linking Experiments(Majorana, EXO); How do stars create the heavy elements? (DIANA); What role did neutrinos play in the evolution of the universe? (LBNE). In addition, scientists propose to build a generic underground facility (FAARM) ...

     Dialogos of Eide: Neutrinoless Double Beta DecayCOBRA · CUORICINO and CUORE · EXO · GERDA · MAJORANA · MOON · NEMO-3 and SuperNEMO · SNO+. See Also:Direct Dark Matter Detection.

    Also From my research:

    1. Neutrinoless Double Beta Decay
    2. A first look at the Earth interior from the Gran Sasso underground laboratory
    3. Mysterious Behavior of Neutrinos sent Straight through the Earth
      *** 
       
    ICECUBE Blog put up some links that I wanted to go through to see what is happening there. Their links provided at bottom of blog post here. Each link of theirs I have provided additional information in concert while I explore above.

    Monday, December 07, 2009

    What Does Information Mean in Science?

    Only time will tell if Einstein was correct when he said, "But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed."


    The March 29 burst changes everything," said co-author Dr. Stan Woosley, University of California, Santa Cruz. Just as the Rosetta stone helped us understand a lost, ancient language, this burst will serve as a tool to decode gamma-ray bursts. It's now known for certain that at least some gamma-ray bursts are produced when black holes, or perhaps very unusual neutron stars, are born inside massive stars, according to the team.

    Most certainly it is not without scientific value that I would say that all means to measure information, has to have a "simplistic modality" with which science garners it's view about and is correlative too. So in this sense, this program although dating back too, December of 2007, it's values are still retained.

    So with this regard to the article and program below, information was an entropic realization in the expression of this universe. What are the constituents that form the state of the universe?

    I enjoyed the humor as it manifested with this group of people. If anything is to help one remember the context of this information it always seems to be deeper entrench in memory if it can be light hearted and funny, as I found this hour and half to be.




    WATERLOO, ON, December 17, 2007 - A recent panel discussion about ‘The Physics of Information’ from Canada’s Perimeter Institute for Theoretical Physics (PI), will air across Canada on CBC’s ‘Quirks and Quarks’ radio program. The Public Lecture will be broadcast via CBC Radio One on Saturday, January 5th from 12:06 to 1:00pm.

    The program includes four top scientists who gathered in Waterloo, Ontario, in early December to hold a discussion for general audiences about the very essence of information and how this might inspire fruitful new approaches to some of the hardest problems in modern physics. Over 600 people attended to learn how a greater appreciation of information relates to the paradoxes of quantum mechanics, the beginning of the universe and our understanding of black holes.  The insights were surprising, enlightening and even controversial.
    See: The Physics of Information: From Entanglement to Black Holes

    http://streamer.perimeterinstitute.ca/mp3/885c534d-2140-496a-8f73-6db23b011504.mp3

    Now also, within this context, if one were to think of the ? and where all four forces joined, then what said this state prior too, cannot be allotted to the energy "before compartmentalization."  Is this not how us humans crystallize the way in which we experience this reality? That at birth, and with some now, such centering, in weighting the sensory categories,  help to define what existed scientifically as a concept of what begins, begins as it did in the beginning of this universe.







    This perspective may be confusing for some, but until you see emotive values expressed as artistic renditions that are evoked by Kandinsky as he did in his artwork, or, others who evoke this "cross wiring" as to how sounds and color associate, then how is it what gathered in the human perspective to allot reality the way it is? A "sensory adaptation" to methods to which we define aspects of the reality and seek to embed methods to which we measure that reality.



    Wassily Kandinsky-Yellow, Red, Blue
    1925; Oil on canvas, 127x200cm; Centre Georges Pompidou, Paris




    September 18, 2009–January 13, 2010Pioneer of abstract art and eminent aesthetic theorist, Vasily Kandinsky (b. 1866, Moscow; d. 1944, Neuilly-sur-Seine, France) broke new ground in painting in the first decades of the twentieth century. His seminal pre–World War I treatise Über das Geistige in der Kunst (On the Spiritual in Art), published in Munich in December 1911, lays out his program for developing an art independent of one’s observations of the external world. In this and other texts, as well as his art, Kandinsky strove to use abstraction to give painting the freedom from nature that he admired in music. His discovery of a new subject matter based solely on the artist’s “inner necessity” occupied him throughout his life.
    Also.....


    The term "Composition" can imply a metaphor with music. Kandinsky was fascinated by music's emotional power. Because music expresses itself through sound and time, it allows the listener a freedom of imagination, interpretation, and emotional response that is not based on the literal or the descriptive, but rather on the abstract quality that painting, still dependent on representing the visible world, could not provide.

    So it is a question then in mind that what began in the very beginning of this universe, also is closely related to what and how we began as we evolved toward the manifestation from another pre-existing state headed toward materialization in the bodily functions, according to this evolution, are standard in expression.


    Credit: Weiqun Zhang and Stan Woosley

    This image is from a computer simulation of the beginning of a gamma-ray burst. Here we see the jet 9 seconds after its creation at the center of a Wolf Rayet star by the newly formed, accreting black hole within. The jet is now just erupting through the surface of the Wolf Rayet star, which has a radius comparable to that of the sun. Blue represents regions of low mass concentration, red is denser, and yellow denser still. Note the blue and red striations behind the head of the jet. These are bounded by internal shocks.



    Human after all, yet capable of experiencing the reality and factoring all measure of, as a truth verification for all that arrive here. An" internal recognition"  of an "outward expression into reality." If one cannot follow the sequence of evens here,  then how is it we can ever ask what begins anew, that the jets them self emit actionable qualities for the new reality? Pushes back time to some beginning. These attributes are measurable quantities that are signaled by,  and are represented in the valuations portrayed on the tscans.


    Credit: Super-Kamiokande/Tomasz Barszczak Three (or more?) Cerenkov rings

    Multiple rings of Cerenkov light brighten up this display of an event found in the Super-Kamiokande - neutrino detector in Japan. The pattern of rings - produced when electrically charged particles travel faster through the water in the detector than light does - is similar to the result if a proton had decayed into a positron and a neutral pion. The pion would decay immediately to two gamma-ray photons that would produce fuzzy rings, while the positron would shoot off in the opposite direction to produce a clearer ring. Such kinds of decay have been predicted by "grand unified theories" that link three of nature's fundamental forces - the strong, weak and electromagnetic forces. However, there is so far no evidence for such decays; this event, for example, did not stand up to closer scrutiny.
    See:Picture of the Week




    So we use measurable methods in which to calculate time in the milliseconds when at that time such expressions amounts too, and exhibits,  all of the fundamental forces and the methods to their expressions.


    Supernova Starting Gun: Neutrinos

    .....Next they independently estimated how the hypothetical neutrinos would be picked up in a detector as massive as Super-Kamiokande in Japan, which contains 50,000 tons of water. The detector would only see a small fraction of the neutrinos. So the team outlined a method for matching the observed neutrinos to the supernova's expected luminosity curve to figure out the moment in time--to within about 10 milliseconds--when the sputtering star would have begun emitting neutrinos. In their supernova model, the bounce, the time of the first gravitational waves, occurs about 5 milliseconds before neutrino emission. So looking back at their data, gravitational wave hunters should focus on that point in time.

    Wednesday, August 27, 2008

    Spherical Cows

    Cartoon Model of a SNR(Supernova Remnants)

    When scientists refer to a spherical cow, we are poking fun at ourselves. We are admitting that some of our models or descriptions of things are far more simple than the actual object, like to say that a cow has a spherical shape. The phenomena we study are often complex, and including too many details can hinder, rather than help our understanding. Often it is useful to study a simplified model which contains only the most important general characteristics. Such a model can be more easily studied using numerical or analytical methods and then compared to observations.

    As an example of this kind of thinking, say we were aliens trying to understand "humans", a strange race of beings recently discovered on a small planet orbiting a medium-sized star. We might divide them into two groups, one which grows facial hair (men), one which does not (women). Within each group there is a lot of variety - each human in the first group group can have facial hair in a wide range of colors and textures, for example. However, we think that there is some underlying reason for the gross characteristic of having or not having facial hair. We might then make more observations to try and understand why this is so. These further observations might uncover more similarities (humans in the first group have both an X and a Y chromosome while humans in the second group have two X shaped chromosomes) that are more fundamental. In astronomy we try to do the same thing.
    See:Spherical Cows There is a older version here.

    Now of course you must know the reason for this article and the subsequent explanation for it. I do expand this article to show some of the current understanding I have as I do my own research, and find how scientific measure is being attributed to our new views of the cosmos as observers. The measure now being reduced to computerizations.

    The researchers studied cows visible on Google Earth Photo: GETTYCows automatically point to the north-Telegraph

    Now I came across this article at Cosmic Variance by reading a blog posting written by Mark.

    Now from my perspective as I see often at Cosmic Variance "this method used" not only by Mark, but Sean Carroll as well. It is a sort of poking fun at the news article that was written. Ones I am starting to become familiar with, as I read my local paper. The information from a science perspective is being generated to the public.

    Should I become a cynic? Should I blur the lines on scientific method? Hold the scientific method against someone with a religious background, other then a humanistic one, and a sceptic to boot? Naw! I shall not be that way, and the way some others in science deal with each other. I shall respect who they are ,for who they are.:)Not my place to judge them.

    Now, is the technique used by these researches in the New Scientist article sound in it's evaluation? I leave that up to you to decide and continue from the perspective I wish to share on my blog.


    Credit: Weiqun Zhang and Stan Woosley
    This image is from a computer simulation of the beginning of a gamma-ray burst. Here we see the jet 9 seconds after its creation at the center of a Wolf Rayet star by the newly formed, accreting black hole within. The jet is now just erupting through the surface of the Wolf Rayet star, which has a radius comparable to that of the sun. Blue represents regions of low mass concentration, red is denser, and yellow denser still. Note the blue and red striations behind the head of the jet. These are bounded by internal shocks.
    See:The Geometrics Behind the Supernova and it's History

    It captures my attention for this reason, and another, which is a trait I myself seemed to fall under. This is in terms of geometrical recognition, as the bubble, circle, whatever your fancy, to illustrate the supernova's action and it's remnants distributed into space. I have such examples to illustrate as one tries to marry the theorists to the science in a phenomenological way.

    See:Central Theme is the Sun as a related posting and subsequent comment for further elucidation of how we now see in space.


    Note: This comment below was remove from that comment section.
    Plato on Aug 27th, 2008 at 10:12 am
    Resistance is futile:)

    Generally the SNR looks different "in each of these different wavelengths", just like you and I look different to another human being (who looks at the visible light) then we do to a bee or a snake (who are able to detect ultraviolet and infrared light, respectively).


    I am not sure if this is the same with regard to the Glast perspective that is opening up our "new window of the Universe?"

    JoAnne sometime ago showed this in relation to the computerize methods used to chart measures on how we may now see the sun for example, in Gamma ray. The "Tscan method" was used in regard to Neutrino research.




    Just so you know at what scale most certain.

    It is important that the chosen highlighted paragraph written in that comment section and repeated here, be seen in this light, and compared to computerize models attained from our methods of measure.

    While the idea here,I am moving away from the spherical cow, by recognizing the way in which observers now see the cosmos as we implement our methods of measure using computerized techniques.

    Tscan

    Tscan ("Trivial Scanner") is an event display, traditionally called a scanner, which I developed. It is a program that shows events graphically on the computer screen.

    It was designed to be simple ("trivial") internally, and to have a simple user interface. A lot of importance was given to giving the user a large choice of options to display events in many different ways.

    Tscan proved to be a very useful tool for the development of fitters. A particularly useful feature is the ability to show custom data for every photpmultiplier tube (PMT). Instead of the usual time and charge, it can show expected charge, scattered light, likelihood, chi-squared difference, patches, and any other data that can be prepared in a text format.
    See:Trivial Scanner

    Credit: Super-Kamiokande/Tomasz Barszczak Three (or more?) Cerenkov rings

    Multiple rings of Cerenkov light brighten up this display of an event found in the Super-Kamiokande - neutrino detector in Japan. The pattern of rings - produced when electrically charged particles travel faster through the water in the detector than light does - is similar to the result if a proton had decayed into a positron and a neutral pion. The pion would decay immediately to two gamma-ray photons that would produce fuzzy rings, while the positron would shoot off in the opposite direction to produce a clearer ring. Such kinds of decay have been predicted by "grand unified theories" that link three of nature's fundamental forces - the strong, weak and electromagnetic forces. However, there is so far no evidence for such decays; this event, for example, did not stand up to closer scrutiny.
    See:Picture of the Week

    Geometrical expression as I have come to understand is my own unique way in which geometrical expression is thought of, and I gave examples here of a discredited person and their research in regards to sonoluminescence, as an example of this feature to map the SNR explosive values. It is only by analogy which I give this relation to help one see this expression in the vacuum of space, as well as leading evolutions in regard to an example of M87 in it's is unfolding.

    The Lighthouse example can be seen here as well, and in this relation Glast measures would help to serve us to see this "new window of the universe" in the way it measures and compartmenting the computerized charting as we observe from this new perspective.

    Update:The value of a spherical cow

    Tuesday, April 01, 2008

    Images of Super-Kamiokande events from tscan

    The Navier-Stokes equations are also of great interest in a purely mathematical sense. Somewhat surprisingly, given their wide range of practical uses, mathematicians have yet to prove that in three dimensions solutions always exist (existence), or that if they do exist they do not contain any infinities, singularities or discontinuities (smoothness). These are called the Navier-Stokes existence and smoothness problems. The Clay Mathematics Institute has called this one of the seven most important open problems in mathematics, and offered a $1,000,000 prize for a solution or a counter-example.



    SETH LLOYD — HOW FAST, HOW SMALL, AND HOW POWERFUL?: MOORE'S LAW AND THE ULTIMATE LAPTOP
    His stunning conclusion?

    "The amount of information that can be stored by the ultimate laptop, 10 to the 31st bits, is much higher than the 10 to the 10th bits stored on current laptops. This is because conventional laptops use many degrees of freedom to store a bit whereas the ultimate laptop uses just one. There are considerable advantages to using many degrees of freedom to store information, stability and controllability being perhaps the most important. Indeed, as the above calculation indicates, to take full advantage of the memory space available, the ultimate laptop must turn all its matter into energy. A typical state of the ultimate laptop's memory looks like a plasma at a billion degrees Kelvin — like a thermonuclear explosion or a little piece of the Big Bang! Clearly, packaging issues alone make it unlikely that this limit can be obtained, even setting aside the difficulties of stability and control."


    Ask Lloyd why he is interested in building quantum computers and you will get a two part answer. The first, and obvious one, he says, is "because we can, and because it's a cool thing to do." The second concerns some interesting scientific implications. "First," he says, "there are implications in pure mathematics, which are really quite surprising, that is that you can use quantum mechanics to solve problems in pure math that are simply intractable on ordinary computers." The second scientific implication is a use for quantum computers was first suggested by Richard Feynman in 1982, that one quantum system could simulate another quantum system. Lloyd points out that "if you've ever tried to calculate Feynman diagrams and do quantum dynamics, simulating quantum systems is hard. It's hard for a good reason, which is that classical computers aren't good at simulating quantum systems."
    Bold emphasis added by me.

    The issue of computer language would have been to reveal the deeper implications of the cosmos, while we entertain the "phase changes the universe will go through." While we may think of the blackhole used as a weapon on April fools day, what use the Ipod in Mission Impossible III if it were to melt into a superfluid and bring forth all the ills of the past? It 's in the supefluid state that all of the information of the past makes it's way again into this universe, and supplies the dark energy for the current state of the Universe?

    Plato said:

    Hey I got one for you. You remember mission impossible. Well in this case, your only able to use the ipod once, then it turns into a super liquid.


    While we consider newer technologies what use to "see the sun in a different way" now that we understand the range of "the window of the universe" now incorporates gamma ray detection, it forces upon us the end result of Tscan compiled data?

    The Tip of the Pyramid and Quantum Gravity

    Michio Kaku:
    I like to compare it to wandering in the desert, and stumbling over a tiny pebble. When we push away the sand, we find that this "pebble" is actually the tip of a gargantuan pyramid. After years of excavation, we find wondrous hieroglyphics, strange tunnels and secret passageways. Every time we think we are at the bottom stage, we find a stage below it. Finally, we think we are at the very bottom, and can see the doorway.

    One day, some bright, enterprising physicist, perhaps inspired by this article, will complete the theory, open the doorway, and use the power of pure thought to determine if string theory is a theory of everything, anything, or nothing.

    Only time will tell if Einstein was correct when he said, "But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed."


    Tscan

    Tscan ("Trivial Scanner") is an event display, traditionally called a scanner, which I developed. It is a program that shows events graphically on the computer screen.

    It was designed to be simple ("trivial") internally, and to have a simple user interface. A lot of importance was given to giving the user a large choice of options to display events in many different ways.

    Tscan proved to be a very useful tool for the development of fitters. A particularly useful feature is the ability to show custom data for every photpmultiplier tube (PMT). Instead of the usual time and charge, it can show expected charge, scattered light, likelihood, chi-squared difference, patches, and any other data that can be prepared in a text format.
    See:Trivial Scanner

    Credit: Super-Kamiokande/Tomasz Barszczak Three (or more?) Cerenkov rings

    Multiple rings of Cerenkov light brighten up this display of an event found in the Super-Kamiokande - neutrino detector in Japan. The pattern of rings - produced when electrically charged particles travel faster through the water in the detector than light does - is similar to the result if a proton had decayed into a positron and a neutral pion. The pion would decay immediately to two gamma-ray photons that would produce fuzzy rings, while the positron would shoot off in the opposite direction to produce a clearer ring. Such kinds of decay have been predicted by "grand unified theories" that link three of nature's fundamental forces - the strong, weak and electromagnetic forces. However, there is so far no evidence for such decays; this event, for example, did not stand up to closer scrutiny.
    See:Picture of the Week