Pages

Showing posts with label Symmetry Breaking. Show all posts
Showing posts with label Symmetry Breaking. Show all posts

Sunday, February 09, 2014

What is Beauty in a Abstract World?

 Pierre Curie (1894): “Asymmetry is what creates a phenomenon.”

This has been of some interest to me as this issue is explained.  I can see where such abstraction when not in some way connected to the real world would to one seem as if it is a dry unimaginative world,  just moving through qualitative functions. It has to mean something more, doesn't it?

Pauli understood that physics necessarily gives an incomplete view of nature, and he was looking for an extended scientific framework. However, the fact that the often colloquial and speculative style of his letters is in striking contrast to his careful and refined publications should advise us to act with caution. His accounts are extremely stimulating, but they should be considered as first groping attempts rather than definitive proposals. See: Pauli’s ideas on mind and matter in the context of contemporary science

Held in context we trust that the philosophical basis is understood as it is being represented in today's world of science. This position with what is self evident must be correlated between theory and physics. So,  I wanted to point to something quite significant for the dry and death forborne mathematician who finds no correlates in the real world. Just goading.

Many prediction-making abilities are low-level and innate. We might say that trees \predict" the arrival of winter and decide to shed their leaves, for example. But in discussing the sense of beauty we are dealing with something that is uniquely human, or nearly See: Whence the Beauty of Mathematics?

It has not past my attention that Beauty is described as not being significant by some of these mathematicians who find no value to it. It means nothing? But for a minute,  think, that if supersymmetry is not established,  then does this in some way reduce the effectiveness of math to explain the symmetrical nature of reality? Should we try to describe these abstract things as being less then beautiful? What use then "any language" that is established,  from that math?

Professor Gates,  what would happen with the beauty of the Adinkra?

***

See Also:

Friday, December 13, 2013

Symmetry Breaking and the Crab Nebula

The connection between superfluidity and symmetry breaking has had a glorious history. It has left us a rich legacy of fertile ideas, that seems far from exhaustion. PG 60 Superfluidity and Symmetry Breaking
You know while there have been processes unfolding with regard to supersymmetry, for the life of it,  I am having a hard time ever denying to myself that the result of any beginning had to have some emergent feature that arose from the very nature of the big bang itself.



So to then, one may see some signs in a biological sense,  as to the nature of evolution? So,  that all things can be defined in this way. But the issue then for me is how "information can exist, " so as to say that such a direction for that evolution,  as an emergent product,  must have some location with which such presence makes itself know(far left of the picture above)? Sure,  because of my ignorance, I would be asking how such information could have ever come into being so as to say that this universe is the one with which such expressions came to be, so I accept the universe as it is.

Click on image above and you create a larger view of a microscopic world

So to then,  for such a gap to exist.  I was most certainly thinking about the LHC's use with which such reductionism were being taken.  I was looking for such signatures as to wonder that if such a location is found then(QGP),  so we could say indeed,  the beginning of the universe, and the correlation drawn,  as to the ever reducibility pursuit as some relation to nature?


The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-ray energies, but data from orbiting observatories show unexpected variations. Since 2008, it has faded by 7 percent, activity likely tied to the environment around its central neutron star. (Video Credit: NASA's Goddard Space Flight Center)


Cosmologically it had to make sense too. So I  looked at events in the cosmos to help me understand what it is that was created in the moments we align ourselves too,as  in the LHC. While I looked at the picture(jet development and expression) above as to the timing with which such a environment, it is now reduced too, the Crab Nebula in its design. Would you deny the Crab Nebula had a previous showing with which the jets them self began to emerge?

An example then exists for me as to how such contributions that could arise in any nebula could have ever contributed to the way the universe is,  and if all such contributions taken to the same question,  helps to define the universe in ways that were preceded . Where that nature of the information is to reside.

So while we had found our limits with regard to Planck scale,  it is thought to me that such a symmetry had exist,  that all forms of that symmetry expresses itself as a forming dualistic nature,  for a symmetry breaking to exist,  and for such a division to take place from such a perfect place.

Tuesday, October 01, 2013

Abdus Salam Movie – The Dream of Symmetry



The movie presents the extraordinary figure of Abdus Salam of Pakistan, who not only was an outstanding scientist but also a generous humanitarian and a valuable person. His rich and busy life was an endless quest for symmetry, that he pursued in the universe of physical laws and in the world of human beings.See:Abdus Salam Movie – The Dream of Symmetry


See Also:

Tuesday, May 14, 2013

A Visual Correlation to Symmetry Breaking

"Symmetry breaking illustrated": – At high energy levels (left) the ball settles in the center, and the result is symmetrical. At lower energy levels (right), the overall "rules" remain symmetrical, but the "Mexican hat" potential comes into effect: "local" symmetry inevitably becomes broken since eventually the ball must roll one way (at random) and not another.

The Standard Model hypothesizes a field which is responsible for this effect, called the Higgs field (symbol: \phi), which has the unusual property of a non-zero amplitude in its ground state; i.e., a non-zero vacuum expectation value. It can have this effect because of its unusual "Mexican hat" shaped potential whose lowest "point" is not at its "centre". Below a certain extremely high energy level the existence of this non-zero vacuum expectation spontaneously breaks electroweak gauge symmetry which in turn gives rise to the Higgs mechanism and triggers the acquisition of mass by those particles interacting with the field. This effect occurs because scalar field components of the Higgs field are "absorbed" by the massive bosons as degrees of freedom, and couple to the fermions via Yukawa coupling, thereby producing the expected mass terms. In effect when symmetry breaks under these conditions, the Goldstone bosons that arise interact with the Higgs field (and with other particles capable of interacting with the Higgs field) instead of becoming new massless particles, the intractable problems of both underlying theories "neutralise" each other, and the residual outcome is that elementary particles acquire a consistent mass based on how strongly they interact with the Higgs field. It is the simplest known process capable of giving mass to the gauge bosons while remaining compatible with gauge theories.[79] Its quantum would be a scalar boson, known as the Higgs boson.[80]

The potential for the Higgs field, plotted as function of \phi^0 and \phi^3. It has a Mexican-hat or champagne-bottle profile at the ground.

Thursday, April 25, 2013

CERN NEWS : LHCb announces new results in matter-antimatter asymmetry


Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but today the universe appears to be composed essentially of matter. By studying subtle differences in the behaviour of particle and antiparticles, experiments at the LHC are seeking to cast light on this dominance of matter over antimatter. Now the LHCb experiment has observed a preference for matter over antimatter known as CP-violation in the decay of neutral B0s particles, read more: http://home.web.cern.ch/about/updates...



See Also:

Tuesday, November 13, 2012

Supersymmetry

Image: Event display of candidate event for this ultra-rare decay observed in the LHCb experiment
Scientists at the Large Hadron Collider (LHC) at CERN, near Geneva, have spotted one of the rarest particle decays ever seen in nature. The result is very damaging to new theories like the extremely popular Supersymmetry (or SUSY for short).

Current knowledge about the most fundamental matter particles (quarks and leptons, such as an electron) and the forces between them is embedded in the so-called Standard Model. The particle masses are a consequence of their interactions with the Higgs field. Exciting the Higgs field in particle collisions at the LHC recently resulted in the discovery of the Higgs boson.

However, the Standard Model is not the ultimate theory; it does not include gravity nor explain 95% of the Universe, which is in the form of Dark Matter and Dark Energy.  See:
SUPERSYMMETRY SQUEEZED AS  LHC SPOTS ULTRA RARE PARTICLE DECAY

Wednesday, July 04, 2012

Higg's Boson: Analogies Help


John Ellis,theoretical physicist, answers the question "What is the Higgs boson?" in preparation for the press conference following the seminar on LHC 2012 results on the Higgs boson search, due on July 4 2012 at CERN. For more details: http://cern.ch/press/PressReleases/Releases2012/PR16.12E.html

See Also: What is the Higgs boson? John Ellis, theoretical physicist





webcast of seminar with ATLAS and CMS latest results from ICHEP




You know analogies are important in that they can bring a lay person some clarity in helping to understand what s going on in the world of science. As a blogger I have attach myself to some scientists who have been more then willing to share this aspect of them-self with the world. I do not know of a more honorable thing a scientist can do but by taking this time to help the public.

Monday, April 30, 2012

A Superset Universe?

How would you draw a Universe with all theories as being part of,  as a subset?





Pictorial representations can be very useful in presenting information or assisting reasoning. Venn diagram is an example. Venn diagrams are used to represent classes of objects, and they can also assist us in reasoning about the relations between these classes. They are named after the English mathematician John Venn (1834 - 1923), who was a fellow at Cambridge University.


A few may have taken in the link supplied to a lecture given by Thomas Campbell with regard to his MBT book he had written. Now, I was drawn to the idea of a Venn diagram presented in his lecture and the idea of how one might have use this diagram as a question about the universe and it's subsets? How would you draw it?







I give a current posting by Sean Carroll with regards to his opinion on a book written by Lawrence Krauss. So there all these theories about the nature of the universe and some scientists of course have their opinions.

............Or not, of course. We should be good empiricists and be open to the possibility that what we think of as the universe really does exist within some larger context. But then we could presumably re-define that as the universe, and be stuck with the same questions. As long as you admit that there is more than one conceivable way for the universe to be (and I don’t see how one could not), there will always be some end of the line for explanations. I could be wrong about that, but an insistence that “the universe must explain itself” or some such thing seems like a completely unsupportable a priori assumption. (Not that anyone in this particular brouhaha seems to be taking such a stance.) SEE:A Universe from Nothing?







Physicists have proposed several theories to explain why Λ is so small. One of the most popular -- the "anthropic principle" -- states that Λ is randomly set and has very different values in different parts of the universe (figure 1). We happen to live in a rare region, or "bubble", where Λ has the value we observe. This value has allowed stars, planets and therefore life to develop. However, this theory is also unsatisfactory for many scientists because it would be better to be able to calculate Λ from first principles.



See also:

Monday, November 28, 2011

History of Supersymmetry to Today

Special Topic of Supersymmetry

by Science Watch


Since the 1980s, if not earlier, supersymmetry has reigned as the best available candidate for physics beyond the standard model. But experimental searches for supersymmetric particles have so far come up empty, only reconfirming the standard model again and again. This leaves supersymmetry a theory of infinite promise and ever more questionable reality. See Link above.

Also: What's Inside ScienceWatch.com This Month - ScienceWatch.com - Thomson Reuters



 Update-

See Also :

Monday, April 04, 2011

It's Lowest Energy State....Matter Formed?

Shape as Memory : A Geometric Theory of Architecture

also

The structure of paintings

 

 
I just wanted to lay out a perspective in relation to how one might describe the engine in relation to the design of the exhaust system as supportive of the whole frame of reference as the engine.

The pipe is a resonant chamber which shapes the exhaust pulse train in a way which uses shock waves to constrain the release of the combustion.Russell Grunloh (boatguy)
I mean it is not wholly certain for me that without perception, once realizing that potential recognizes that like some "source code" we are closer to recognizing the seed of our action, is an expression of the momentum of our being. It is a stepping off of all that we have known, is an innate expression of our being in action.

So as souls, we are immortalized as expressions of,  like a memory that tells a story about our life, our choices and the life we choose to live.

Dr. Mark Haskins
On a wider class of complex manifolds - the so-called Calabi-Yau manifolds - there is also a natural notion of special Lagrangian geometry. Since the late 1980s these Calabi-Yau manifolds have played a prominent role in developments in High Energy Physics and String Theory. In the late 1990s it was realized that calibrated geometries play a fundamental role in the physical theory, and calibrated geometries have become synonymous with "Branes" and "Supersymmetry".

Special Lagrangian geometry in particular was seen to be related to another String Theory inspired phemonenon, "Mirror Symmetry". Strominger, Yau and Zaslow conjectured that mirror symmetry could be explained by studying moduli spaces arising from special Lagrangian geometry.

This conjecture stimulated much work by mathematicians, but a lot still remains to be done. A central problem is to understand what kinds of singularities can form in families of smooth special Lagrangian submanifolds. A starting point for this is to study the simplest models for singular special Lagrangian varieties, namely cones with an isolated singularity. My research in this area ([2], [4], [6]) has focused on understanding such cones especially in dimension three, which also corresponds to the most physically relevant case.

So it is also about string theory in a way for me as well, and my attempts to understand those expressions in the valley.  Poincare's description of a pebble, rolling down from the hilltop.


It follows then that not all comments will not all be accepted, yet,  I felt it important for one to recognize what Poincare was saying and what I am saying.


HENRI POINCARE Mathematics and Science:Last Essays


Since we are assuming at this juncture the point of view of the mathematician, we must give to this concept all the precision that it requires, even if it becomes necessary to use mathematical language. We should then say that the body of laws is equivalent to a system of differential equations which link the speed of variations of the different elements of the universe to the present values of these elements.

Such a system involves, as we know, an infinite number of solutions, But if we take the initial values of all the elements, that is,their values at the instant t =(which would correspond in ordinary language to the "present"), the solution is completely determined, so that we can calculate the values of all the elements at any period
whatever, whether we suppose />0, which corresponds to the "future," or whether we suppose t<0, which corresponds to the "past." What is important to remember is that the manner of inferring the past from the present does not differ from that of inferring the future from the present.

Contrast the pebble as an issuance of,  from symmetry, and the top of mountain(a sharpened pencil standing straight up) and the decay(asymmetry), as an expression of the solidification of who we are in that valley. as a pebble?? After the example, we are but human form with a soul encased. The present, is our future? Our past, our presence?

Mathematics and Science: Last Essays, by Henri Poincare

8 Last Essays

    "But it is exactly because all things tend toward death that life is
    an exception which it is necessary to explain.

    Let rolling pebbles be left subject to chance on the side of a
    mountain, and they will all end by falling into the valley. If we
    find one of them at the foot, it will be a commonplace effect which
    will teach us nothing about the previous history of the pebble;
    we will not be able to know its original position on the mountain.
    But if, by accident, we find a stone near the summit, we can assert
    that it has always been there, since, if it had been on the slope, it
    would have rolled to the very bottom. And we will make this
    assertion with the greater certainty, the more exceptional the event
    is and the greater the chances were that the situation would not
    have occurred."

Of course I do not believe our lives are just an expression of chance,  but choice as "a memory" we choose. Of course too, how do you set up a life as an expression if you do not continue to learn?



In the pool of symmetry, how did we ever begin? I looked for such expressions as if mathematically deduced from a time where we might be closer to the idea of such a pool. Ramanujan comes to mind.

Then too, if we are to become spiritually immersed back again from where we came from,  then how can we individually be explained "as a spark of measure,"  for each soul as a memory to be chosen from all that has existed before, for such an expression in this life as the task of it's future??

Wednesday, November 10, 2010

It's Neither World, not Nether

Netherworld is often used as a synonym for Underworld.

Okay this may seem like a strange title, but believe me when I say how fascinating that such dynamics in meeting "each other: will allow something to "pop" right out of existence.

Underworld is a region in some religions and in mythologies which is thought to be under the surface of the earth.[1] It could be a place where the souls of the recently departed go, and, in some traditions, it is identified with Hell or the realm of death. In other traditions, however, such as animistic traditions, it could be seen as the place where life appears to have originated from (such as plant life, water, etc.) and a place to which life must return at life's end, with no negative undertones.

I mean I am not quite sure how this post must materialize, to conclude "non-existence" until it is clear, that such dynamics  will allow such a thing to happen, that one could say indeed,  they have completed their journey.

Now can I say that this is the process of the universe,  I can't be sure.I know that in the "mediation process" for concluding the experience,  such an experience has to come undone. Again this is such a strange thing in my mind that I had to say that "I was the experience" until such a time, that going along with other things in sameness of dynamics, that it was hard at first to see this dynamics in play as being apart from it.  I could actually only say enough of this experience to concluded  the realization of coming undone. Hmm...

To solidify this until understanding, I relived these things until I saw the last of the tension ebb away to allow  "a tension" to become undone. As if such tension "had to exist" until the very bubble that harbored and allowed all of the world of our expediency no longer supported such a viable option as that bubble.

I know this is not such a cute analogy but to get to the essence of the story then it has to be understood that underneath "this experience"  is a dynamcial revelation of sorts that hides the equation of such an experience?

You should know then that I see this very schematics of the world as having this nature to it that we may describe reality as something closer to the definition of it's very existence and that such a attempt at describing nature was to get to the very end of what begins? Imagine arriving at the juxtaposition of such a point?

How are We to Contained Experience?

In mathematics, the Klein bottle ([klaɪ̯n]) is a non-orientable surface, informally, a surface (a two-dimensional manifold) with no identifiable "inner" and "outer" sides. Other related non-orientable objects include the Möbius strip and the real projective plane. Whereas a Möbius strip is a two-dimensional surface with boundary, a Klein bottle has no boundary. (For comparison, a sphere is an orientable surface with no boundary.)
By adding a fourth dimension to the three dimensional space, the self-intersection can be eliminated. Gently push a piece of the tube containing the intersection out of the original three dimensional space. A useful analogy is to consider a self-intersecting curve on the plane; self-intersections can be eliminated by lifting one strand off the plane.
This immersion is useful for visualizing many properties of the Klein bottle. For example, the Klein bottle has no boundary, where the surface stops abruptly, and it is non-orientable, as reflected in the one-sidedness of the immersion.

The geometry was revealing as I tried to encapsulate this point, so as to see where such a description fell away from all that we can contain of the world. That we can truly say we had indeed let go. To imagine then that one's grip on things became ever tighter, while wishing to let the strength of this while becoming ever stronger to fall away.

"While Gassner was watching television, the natural motion of the Earth must have carried him through a small non-orientable pocket of the universe," said Boris Harkov, a mathematician at the Massachusetts Institute of Technology in Cambridge. "That's the only reasonable explanation."

One way to test the orientation of the universe is to hurl a right-handed glove into the air and see if it falls back to Earth as a left-handed glove--if it does, the universe must be non-orientable. Since Gassner's announcement, physicists have been carrying out such experiments, both outdoors and in Gassner's TV room, but so far all tests have come back negative. Still, many researchers are optimistic. "I'm confident that the glove will flip soon," said Chen Xiang, an experimental physicist at Brookhaven National Laboratory in New York. The Klarreich Occasionally


Ultimate realization that what is negative is a positive toward completion.That is how one might define the whole perspective of validation of no longer being negative?

As if one wold realize that such a tension revealed in the Tao, no longer existed in the picture as a demonstration of the Tao now gone.
Now, such a object seemed part of the experience,  as to the unfolding, yet in my inadequate understanding how could such a thing be taken down to such a point as to say it no longer existed. How can I say say such a geometry was part of that process while I struggle to define such an action as falling away or reducing it to such a point of nothing?

It's enough then that one sees "around that point"  that the ultimate quest envisions such  an "undoing" that we see where the relevance of such a tension can and should no longer exist?

The Experience Most Fitting then ?

As I relayed earlier I experience many things until I understood this undoing, that such reason then to awareness of "what should be" was capsulized in only one example. How shall I say it then that I understood all that befell me to dissolution to show that such a demonstration was complete. I would still be here? That such an equation of resistance could have been imparted not only in the equation, but in the telling of the experience too?

While I show by experience such an example it should be taken that in this example I have changed the name of the person in order to protect our association. Shall I be so forthcoming that only the "object of relation" shall be the only thing identifiable  so as to know that this association is very real to me, and only to me by that person's identification as an experience that is real? Aw....well anyway "more then one" for sure, as to the way in which I use that experience to demonstrate.

It all began, as I noticed a tension in his voice, as he slipped into the realization of something that had happen to him earlier in that day. I was taken to a "good observation point" so that I might admit to seeing what he was seeing.  As hard as I looked at first I could not tell what he was so upset about that I tried ever harder  to see, that slowly I understood then what he was pointing at. Why such a tension could exist in him and his voice, that such a rectification and adjustment was needed in order to make this right.

As I relay this situation it was apparent at the time of such a demonstration, as to a example that this situation popped up,  as such a reason to be demonstrated that to make it right, had to be the undoing of what made it wrong you see. To make the point ever driven home for realization was to demonstrate that such undoing had to rectify the situation of where it began, so of course,  all actions taken to get it fixed. Could it have ever been undone?

Well as if I understood why such an experience came frothing to the surface of awareness I thought to conclude this example by what I saw, that it took me by realization that "in turning" to back up, a hand imprint in oil was left on the back of the seat in order for the person to complete the job. A "new point of tension" by not washing their hands, or not covering  pristine upholstery that was just purchased, was created.

All of this has to be undone in order for one to say that this experience has popped out of existence you see?

That was how such a demonstration was shown to be reasonable in my mind for such an equation to manifest such a description about that experience that I could say that it was reasonable to me that I had understood.

Was it a good example rests on you to be sure.

***
Physically, the effect can be interpreted as an object moving from the "false vacuum" (where = 0) to the more stable "true vacuum" (where = v). Gravitationally, it is similar to the more familiar case of moving from the hilltop to the valley. In the case of Higgs field, the transformation is accompanied with a "phase change", which endows mass to some of the particles

"Quantum Field Theory

Quantum Vacuum:

In classical physics, empty space is called the vacuum. The classical vacuum is utterly featureless. However, in quantum theory, the vacuum is a much more complex entity. The uncertainty principle allows virtual particles (each corresponding to a quantum field) continually materialize out of the vacuum, propagate for a short time and then vanish. " http://universe-review.ca/R15-12-QFT.htm#vacuum

"The idea behind the Coleman-De Luccia instanton, discovered in 1987, is that the matter in the early universe is initially in a state known as a false vacuum. A false vacuum is a classically stable excited state which is quantum mechanically unstable." http://www.damtp.cam.ac.uk/research/gr/public/qg_qc.html

Wednesday, September 15, 2010

Old News Can Still Be New Information

Getting a handle on Symmetries is an always work in progress for me, so as to keep abreast of the science and the theoretic involved.

Why has Physics Today's news coverage of string theory been so sparse?

Given string theory's high ambition to account for all nature's forces and particles, given the number of string theorists working to achieve that ambition, and given the general public's interest in string theory, two stories in seven years might seem low. But is it? (See above link)

So traveling back in time,  one can move forward.


Nambu - Credit: Univeristy of Chicago
Kobayashi - Credit: KEK
Maskawa - Credit: Yukawa Institute, Kyoto University
Nambu
Kobayashi
Maskawa

Spontaneous symmetry breaking

Introduced into particle physics by Nambu in 1960, spontaneous symmetry breaking was to become a pillar of the field’s standard model, which since its completion in the mid-1970s has survived every experimental challenge. When a physical state does not exhibit all the symmetries of the dynamical laws that govern it, the violated symmetries are said to be spontaneously broken.
The idea had been around for a long time in classical mechanics, fluid dynamics, and condensed-matter physics. An oft-cited example is ferromagne­tism. Its underlying laws of atomic physics are absolutely invariant under rotation. Nonetheless, below a critical temperature the atomic spins spontaneously line up in some arbitrary direction to create a state that is not rotationally symmetric. Similarly, the cylindrical symmetry of a state in which a pencil is perfectly poised on its tip is spontaneously broken when the pencil inevitably falls over. But such examples give little hint of the subtlety and power of the notion once Nambu began exploiting it in quantum field theory.
It began with a paper Nambu wrote in 1959 about gauge invariance in superconductivity.1 The paper exhibits his virtuosity in two disparate specialties—quantum field theory and condensed-matter theory. He became conversant with both as a graduate student at the University of Tokyo after he was mustered out of the army in 1945. Eventually he began working with the group around Sin-itiro Tomonaga, one of the creators of modern quantum electrodynamics (QED). Tomonaga was actually based at another university in Tokyo. But the University of Tokyo was strong in condensed-matter physics. So Nambu started out working on the Ising model of ferromagnetism.
After two years at the Institute for Advanced Study in Princeton, Nambu came to the University of Chicago in 1954, just before the untimely death of Enrico Fermi. When John Bardeen, Leon Cooper, and Robert Schrieffer published their theory of superconductivity in 1957, Nambu and others noted that the BCS superconducting ground state lacked the gauge invariance of the underlying electromagnetic theory. In classical electrodynamics, gauge invariance refers to the freedom one has in choosing the vector and scalar potentials. In QED that freedom is linked to the freedom to change the phase of the electron wavefunction arbitrarily from point to point in space. Did the gauge-symmetry violation mean that the BCS theory was simply wrong? Or perhaps superconductivity was a manifestation of some yet unknown force beyond electromagnetism and atomic physics.
Having heard Schrieffer give a talk about the new theory in 1957 without mentioning gauge invariance, Nambu spent the next two years thinking about its role in the theory. He recast the BCS theory into the perturbative quantum-field-theoretic formalism with which Richard Feynman had solved—independently of Tomonaga—the problem of the intractable infinities in QED. From that reformulation, Nambu concluded that the superconducting ground state results from the spontaneous breaking of the underlying gauge symmetry. He showed that all the characteristic manifestations of superconductivity—including the expulsion of magnetic flux and the energy gap that assures lossless current flow—follow simply from that spontaneous symmetry breaking.
See:Physics Nobel Prize to Nambu, Kobayashi, and Maskawa for theories of symmetry breaking by Bertram Schwarzschild Physics Today and references cited in article below.

  1. 1. Y. Nambu, Phys. Rev. 117, 648 (1960) [SPIN].
  2. 2. Y. Nambu, Phys. Rev. Lett. 4, 380 (1960) [SPIN].
  3. 3. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961) [SPIN]; 124, 246 (1961) [SPIN].
  4. 4. P. W. Anderson, Phys. Rev. 130, 439 (1963) [SPIN].
  5. 5. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) [SPIN]; P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964) [SPIN]; G. S. Guralelnik, C. R. Hagen, T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964) [SPIN].
  6. 6. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967) [SPIN].
  7. 7. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973) .
  8. 8. S. L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2, 1285 (1970) [SPIN].

Sunday, July 11, 2010

A Way From Perfection- Symmetry

Noether's Theorem

"For every continuous symmetry of the law of physics, there must exist a conservation law.

For every conservation law, there must exist a continuous symmetry"

Conservation laws and symmetry

The symmetry properties of a physical system are intimately related to the conservation laws characterizing that system. Noether's theorem gives a precise description of this relation. The theorem states that each continuous symmetry of a physical system implies that some physical property of that system is conserved. Conversely, each conserved quantity has a corresponding symmetry. For example, the isometry of space gives rise to conservation of (linear) momentum, and isometry of time gives rise to conservation of energy.
The following table summarizes some fundamental symmetries and the associated conserved quantity.

Class Invariance Conserved quantity
Proper orthochronous
Lorentz symmetry
translation in time
  (homogeneity)
energy

translation in space
  (homogeneity)
linear momentum

rotation in space
  (isotropy)
angular momentum
Discrete symmetry P, coordinate inversion spatial parity

C, charge conjugation charge parity

T, time reversal time parity

CPT product of parities
Internal symmetry (independent of
spacetime coordinates)
U(1) gauge transformation electric charge

U(1) gauge transformation lepton generation number

U(1) gauge transformation hypercharge

U(1)Y gauge transformation weak hypercharge

U(2) [U(1)xSU(2)] electroweak force

SU(2) gauge transformation isospin

SU(2)L gauge transformation weak isospin

PxSU(2) G-parity

SU(3) "winding number" baryon number

SU(3) gauge transformation quark color

SU(3) (approximate) quark flavor

S((U2)xU(3))
[ U(1)xSU(2)xSU(3)]
Standard Model

 

Conservation law

From Wikipedia, the free encyclopedia

In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves.

One particularly important physical result concerning conservation laws is Noether's Theorem, which states that there is a one-to-one correspondence between conservation laws and differentiable symmetries of physical systems. For example, the conservation of energy follows from the time-invariance of physical systems, and the fact that physical systems behave the same regardless of how they are oriented in space gives rise to the conservation of angular momentum.

A partial listing of conservation laws that are said to be exact laws, or more precisely have never been shown to be violated:
There are also approximate conservation laws. These are approximately true in particular situations, such as low speeds, short time scales, or certain interactions.

See also

References

  • Victor J. Stenger, 2000. Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Buffalo NY: Prometheus Books. Chpt. 12 is a gentle introduction to symmetry, invariance, and conservation laws.

External links

Sunday, May 02, 2010

Who Has Forgotten the Child's Question?

Physicists theorize that the omnipresent Higgs field slows some particles to below light speed, and thus imbues them with mass. Are we there yet?


How many of you with children have not heard our own children speak with impatience of wanting to be "there" and having to sit a long time before this is even possible?

Well, can you imagine the patience it took to materialize the experiments at Cern, in asking fundamental question about nature? It took a lot of patience and careful planning. There is no doubt about this.

I would also ask that those that visit this blog examine the picture below, as to the nature of "First Principle," in terms of computerized data, so that you understand this in context of an algorithm written, it is but the very essence of how something could have arisen in nature, had to be written into the "data accumulation" in order for us to recognize what is at the frontier of this experiment/knowledge in question.

The question of symmetry placed in this idea of computerized data, raises the idea of the types of formations that we will used to describe data gathered by Fermi as a descriptor of cosmos events in their unfolding.




Are we there yet?

Source of Q&A from linked article above.




Q&A with the Universe


From the quest for the most fundamental particles of matter to the mysteries of dark matter, supersymmetry, and extra dimensions, many of nature’s greatest puzzles are being probed at the Large Hadron Collider.



What is the form of the universe?

Physicists created the Standard Model to explain the form of the universe—the fundamental particles, their properties, and the forces that govern them. The predictions of this tried-and-true model have repeatedly proven accurate over the
years. However, there are still questions left unanswered. For this reason, physicists have theorized many possible extensions to the Standard Model. Several of these predict that at higher collision energies, like those at the LHC, we will
encounter new particles like the Z', pronounced " Z prime." It is a theoretical heavy boson whose discovery could be useful in developing new physics models. Depending on when and how we find a Z' boson, we will be able to draw more conclusions about the models it supports, whether they involve superstrings, extra dimensions, or a grand unified theory that explains everything in the universe. Whatever physicists discover beyond the Standard Model will open new frontiers for exploring the nature of the universe.
spacer

What is the universe made of?

Since the 1930s, scientists have been aware that the universe contains more than just regular matter. In fact, only a little over 4 percent of the universe is made of the matter that we can see.Of the remaining 96 percent, about 23 percent is dark matter and everything else is dark energy, a mysterious substance that creates a gravitational repulsion responsible for the universe’s accelerating expansion. One theory regarding dark matter is that it is made up of the as-yet-unseen partners of the particles that make up regular matter. In a supersymmetric universe, every ordinary particle has one of these superpartners. Experiments at the LHC may find evidence to support or reject their existence.


Are there extra dimensions?

We experience three dime nsions of space. However, the theory of relativity states that spacecan expand, contract, and bend. It’s possible, therefore, that we encounter only three spatial dimensions because they’re the only ones our size enables us to see, while other dimensions are so tiny that they are effectively hidden. Extra dimensions are integral to several theoretical models of the universe; string theory, for example, suggests as many as seven extra dimensions of space. The LHC is sensitive enough to detect extra dimensions ten billion times smaller than an atom. Experiments like ATLAS and CMS are hoping to gather information about how many other dimensions exist, what particles are associated with them, and how they are hidden.

spacer

What are the most basic building blocks of matter?


Particle physicists hope to explain the makeup of the universe by understanding it from its smallest, most basic parts. Today, the fundamental building blocks of the universe are believed to be quarks and leptons; however, some theorists believe that these particles are not fundamental after all. The theory of compositeness, for example, suggests that quarks are composed of even smaller particles. Efforts to look closely at quarks and leptons have been difficult. Quarks are especially challenging, as they are never found in isolation but instead join with other particles to form hadrons, such as the protons that collide in the LHC. With the LHC’s high energy levels, scientists hope to collect enough data about quarks to reveal whether anything smaller is hidden inside.

Why do some particles have mass?


Through the theory of relativity, we know that particles moving at the speed of light have no mass, while particles moving slower than light speed do have mass. Physicists theorize that the omnipresent Higgs field slows some particles to below light speed, and thus imbues them with mass. We can’t study the Higgs field directly, but it is possible that an accelerator could excite this field enough to "shake loose" Higgs boson particles, which physicists should be able to detect. After decades of searching, physicists believe that they are close to producing collisions at the energy level needed to detect Higgs bosons.

Tuesday, May 12, 2009

"Bag Model," for the Economy

In this edition, as a fifth appendix, a presentation of my views on the problem of space in general and the gradual modifications of our ideas on space resulting from the influence of the relativistic view-point. I wished to show that space-time is not necessarily something to which one can ascribe a separate existence, independently of the actual objects of physical reality. Physical objects are not in space, but these objects are spatially extended. In this way the concept of “empty space” loses its meaning”. A. Einstein (June 9th, 1952)



Photo by Steve Hsu-
The first photo is the morning panel discussion. From left to right, Eric Weinstein, Nouriel Roubini, Richard Freeman and Nassim Taleb.


The Economic Crisis and its Implications for The Science of Economics.

May 1 - 4, 2009
Perimeter Institute

Concerns over the current financial situation are giving rise to a need to evaluate the very mathematics that underpins economics as a predictive and descriptive science. A growing desire to examine economics through the lens of diverse scientific methodologies - including physics and complex systems - is making way to a meeting of leading economists and theorists of finance together with physicists, mathematicians, biologists and computer scientists in an effort to evaluate current theories of markets and identify key issues that can motivate new directions for research. Perimeter Institute was suggested to be the gathering point and conference organizers plan to foster a very careful, dispassionate discussion, in an atmosphere governed by the modesty and open mindedness that characterizes the scientific community.

The conference will begin on May 1, 2009, with a day of talks by leading experts to an invited audience on the status of economic and financial theory in light of the current situation. Three days of private, focused discussions and workshops will ensue, aimed at addressing complex questions and defining future research agendas for the world that can help address and resolve them.
See: Reflections from PI’s economics conference, May 1-4 2009

***




The economy is in a ideological struggle to be free:) The more you try to pull it apart the stronger it resists.:)But in a collision, what happens. The rest, you know about?:)

Jets Provide Evidence for Quark Confinement Models




Deep inelastic scattering experiments provided the evidence that the proton and neutron are made up of three more fundamental particles called quarks . One type of experiment in the proton-antiproton colliders produces jets of mesons which correlate with the models of quark confinement. As visualized in the bag model for quark confinement, an individual quark cannot be pulled free because the energy required to do it is much greater than the pair production energy of a quark-antiquark pair. If in a high energy collision, something scatters directly off one of the constituent quarks, it will give it a high energy. With an energy many times the pair production energy, it will create a jet of quark-antiquark pairs (mesons).
See:Evidence for Quark Theory

***


At times the economy can flow quite easily, while other times, it resists. It is the elastic nature that defines the symbiotic relation of a cultural thinking about what the economy can actually permit, and what of itself, it shall not.

This is a "toposense" synesthesically imbued as relevant too, an expression of what can surround the "psychology of society?" What proof do I have that such thinking geometrically induced shall not find itself "in movement" as it is thought about, as well? Dynamically this was lead too. How one can move in straight lines and such, was moved to a new mode of thinking that excels toward a movement in thought. It is done, as if theoretically moved toward a QGP recognition of the dynamical recognition, as if, the theory of strings.

***


See Also:
  • Coin, as a Constituent of Symmetry
  • The Other Side of the Coin
  • The Toposense of Spacetime
  • Topo-sense?
  • Tuesday, March 17, 2009

    All Possible Outcomes?

    I must say to you that in my case I am asking of Calabi Yau's, can have some predictability to how universe selection is accomplished and thus any steady development in mathematics pushing that landscape to credibility?


    This entry is for representing a point of view much clearer then had been previously demonstrated in the following links shown below at the bottom of this post.

    Phil:
    I wouldn’t exactly say that the evidence presented on its own would not have been enough, yet rather that it became more quickly evident and compelling as the speaker was relaying his findings and conclusions while reliving for us his ‘eureka” moment you might say. This has the learner trade places with the discoverer as to experience the moment. Anthony Zee had the same effect on me in the book I have mentioned. Where I am certain you are correct is that despite the abilities of the teacher if one is not open to things in these ways they will never be sought to be enjoyed. This for me is the difference in simply learning a fact and realizing a truth.




    Of course I like humour and in this context, it can show another side to the coin to show that while it has a quality to it in that humour, it also has a science consideration in structure as well. The Aristotelean arch is representative here then of the moment that the climax is reached, as if telling a story about, and we know very well its meaning.

    It is the assessment of a "body of thought" that arranges itself around a progressive point of view, that while matter forming in retention times of those smaller peaks of the classroom it became the written word of the orators. You see, smaller peaks versus written transmission of the idea.

    Pg 191, Symmetry and the Beautiful Universe, by Leon M. Lederman and Christopher T. Hill

    That this place can reside in the thinking mind is a quandary of sorts knowing full well the probabilistic outcome ensures that the direction, after critical thinking, is the way in which the mind comes to see itself as it rests in the valley below. Conceptually the thinking has formed.

    Pg 200, Symmetry and the Beautiful Universe, by Leon M. Lederman and Christopher T. Hill

    ***


    You see while some are expanding their physical horizons, it is of note that I see they had been expanding their mental one too. Some have comment on the flexibility of an intelligent mind to traverse across the globe of that same thinking mind, to expand the relationships that are psycho relevant in an metaphorical relation to contract it to a humour of a kind, and a hence a deeper meaning.

    See:Backreaction-Power Spectrum

    So in all aspects while we see this relational pictorial chart it is in relation to the potential I see, that any mind might have settled down to a state to have caught the jest of the revision so that its relevance can been seen in that same relationship to the universe at large.

    So the peak in this case is a rendition of the unstableness of the pencil in relation to Cosmic inflation. That any mind might come to this position is to recognize that it has found the fastest route to the understanding of the symmetry of this universe and that th energy contained here is although unstable it is found to be expressive.




    ***


    See:
  • Coin, as a Constituent of Symmetry
  • Stargazers and Hill Climbers
  • Orators Reduced to Written Words


  • See Also:
  • The Location of the Rooms
  • The Landscape Again and again....
  • Friday, February 20, 2009

    Oh Dear!... How Technology has Changed Things

    Mathematics, rightly viewed, possesses not only truth, but supreme beautya beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry.--BERTRAND RUSSELL, Study of Mathematics


    The "Talking Pictures" Projection Wagon-
    In the 1920's about the only entertainment that came to the rural community of Leakey, Texas was the traveling tent shows. This form of family entertainment would come to the canyon about once a year to the delight of all. Everyone looked forward to the horse drawn wagons that brought the much anticipated entertainment to town. In later years the horses were replaced by the Model T Fords but this form of transportation did not deter the excitement.
    See:"Leakey's Last Picture Show" by Linda Kirkpatrick
    Vintage photos courtesy Lloyd & Jackie Shultz

    It is important sometimes to hone in on exactly what sets the mind to have it exemplify itself to a standard that bespeaks to the idealizations that can come forward from a most historical sense. It is in this way that while one can envision where the technological views have replaced the spoken word in movie pictures, we can see the theatre above as an emblazoned realization of what changes has been brought to society and what may have been lost in some peoples eyes.


    This is a photograph of author and philosopher Robert M. Pirsigtaken by Ian Glendinning on the eve of the Liverpool conference of 7th July 2005.
    What is in mind is a sort of Chautauqua...that's the only name I can think of for it...like the traveling tent-show Chautauquas that used to move across America, this America, the one that we are now in, an old-time series of popular talks intended to edify and entertain, improve the mind and bring culture and enlightenment to the ears and thoughts of the hearer. The Chautauquas were pushed aside by faster-paced radio, movies and TV, and it seems to me the change was not entirely an improvement. Perhaps because of these changes the stream of national consciousness moves faster now, and is broader, but it seems to run less deep. The old channels cannot contain it and in its search for new ones there seems to be growing havoc and destruction along its banks. In this Chautauqua I would like not to cut any new channels of consciousness but simply dig deeper into old ones that have become silted in with the debris of thoughts grown stale and platitudes too often repeated.
    Zen and the Art of Motorcycle Maintenance Part 1 Chapter 1.(Bold added by me for emphasis)

    I wanted to take the conversation and book presented by Phil and immortalize it in a way by laying it out for examination. Regardless of my opinions and viewpoint, the world goes on and the written work of Robert Pirsig persists as a "object of the material." In the beginning, no matter the choice to illuminate the ideal, it has been transgressed in a way by giving the symbols of language to a discerning mind and verily brought to that same material world for examination. How ever frustrating this may seem for Pirsig, it is a fact of light that any after word will reveal more then what was first understood. Reflection has this way about it in the historical revelation, of how the times are changing. Things dying and becoming new. The moon a reflection of the first light.


    The conclusion of the whole matter is just this,—that until a man knows the truth, and the manner of adapting the truth to the natures of other men, he cannot be a good orator; also, that the living is better than the written word, and that the principles of justice and truth when delivered by word of mouth are the legitimate offspring of a man’s own bosom, and their lawful descendants take up their abode in others. Such an orator as he is who is possessed of them, you and I would fain become. And to all composers in the world, poets, orators, legislators, we hereby announce that if their compositions are based upon these principles, then they are not only poets, orators, legislators, but philosophers.
    Plato, The Dialogues of Plato, vol. 1 [387 AD] PHAEDRUS.


    ***


    IN announcing himself in the written work with regards to the IQ given in signalling the identity of the character Phaedrus, it was important that one see this in a way that excuses are not made, and allowances not be set forth for what was to become the lone wolf. John Nash too, had his excursions into the bizarre as well, was to know that in the "end of his synopsized life," a certain contention that he had to deal with in this inflection of his disease, as part of his make-up. Was to deal with, while now, he continues to move on with his life. He is aware of the intrusions that personage can do as it infringes from the periphery, as ghosts of his mind too.

    To me in reading John Nash's biography in historical movie drama, was to bring attention to what cannot be condoned by exception, when allowing genius to display it's talents, while causing a disruption not only to themself, but to see the elite make allowances for these transgressions. Pattern seeking is not to be be rifting the idea, that we cannot look into the very structure of reality and see what makes it tick? Just that we do not get lost in travelling the journey.

    Practising escapism was to deny oneself the responsibility of becoming whole. To allow for genius, as an exception, would mean to not recognize that the intellect is part and parcel of the greater whole of the person called Robert Pirsig or John Nash.

    Who of us shall placate failure as a sure sign of genius and allow the student 's failure as acceptable? This was a transgression seen from another perspective and as afterthought realized in a mistaken perception "about broadcasting Phaedrus" as some towering voice from the past as relevant in todays world, because of the location and time in history?


    ***



    Click on link Against symmetry (Paris, June 06)

    While I may use the alias of Plato and look at the substance of his written work, it is also from that view point such a discussion had to take place within the context of the written prose about two people in this Socratic method, that while worlds in the dialogues existed in speech, no such persons were there at the time. Yet, such thoughts are transmitted and established in that historical sense, and moved forward to this time.


    Against symmetry (Paris, June 06)


    To me there are two lines of thought that are being established in science that in Lee Smolin's case is used to move away from the thinking of the idea of Plato's symmetry by example. To see such trademarks inherent in our leaders of science is too wonder how they to, have immortalize the figures of speech, while trying hard to portray the point of view that has been established in thought. These signatures have gone from Heisenberg to Hooft. And the list of names who have embedded this move to science, as a education tool, that is always inherent in the process. That reference is continually made.

    IN this sense I do not feel I had done anything wrong other then to ignite the idealization I have about what that sun means to me, as the first light in a psychological sense. Where it resides in people. How divorce we can be from it while going on about our daily duties existing in the world. That there also resides this "experience about our beginnings." To ignite what the word of geometrics has done in the abstract sense. How much closer to the reality such a architecture is revealed in Nature's way, to know that we had pointed our observations back inside, to reveal the world outside.


    ***


    See Also:

  • Stargazers and Hill Climbers



  • Evolutionary Game Theory



  • Inside the Mathematical Universe