Showing posts with label Superfluids. Show all posts
Showing posts with label Superfluids. Show all posts

Tuesday, April 15, 2014

Freewill under Scrutiny

Photo courtesy of the Department of Rare Books and Special Collections, Princeton University Library.
 ΔpΔxh/2π

In contrast I seek to awaken a fair and good interpretation of the "I AM" as the intellect and, and about our choices.  How we make them, and how we can be mindful of them. So here in lies my understanding that, one's intellect must be in charge to refer to the one as sitting in a position not egotistically centered, but the ego in the "I am," egotistically centered.:) It can be Illusive as to pinpoint "the center." So God then,  is Symmetry, and Symmetry has been broken?


BEHOLDING beauty with the eye of the mind, he will be enabled to bring forth, not images of beauty, but realities, for he has hold not of an image but of a reality, and bringing forth and nourishing true virtue to become the friend of God and be immortal, if mortal man may. Would that be an ignoble life? PLATO

It is never easy to understand the full scope of the question of,  by belief alone. So I sought here to try and give this Free Will some foundation.


Whether a particular thing happens, says Aristotle, may depend on a series of causes that
"goes back to some starting-point, which does not go back to something else. This, therefore, will be the starting-point of the fortuitous, and nothing else is the cause of its generation." Metaphysics Book VI 1027b12-14) See: The Cogito Model

The direct action,  according to my understanding is that one has "gained from experience."  So experience, is in a way "a value system" which I may use in order to understand those choices,  as well as,  to use that "information" to make decisions. In this way, I have set the causal affect for the future as to a determination with which causal chains must be linked back too, this original position??

  Pierre Curie (1894): “Asymmetry is what creates a phenomenon.”

So with a place in mind, as the intellect, we see what transpires as we "project into the future." So then, as to set the course of action dependent upon, the theory behind the ability of Free Will. This becomes a determinant feature in the link as a causal that is no longer left too, happen stance.


I suspect that will, qualia, meaning and intentionality will turn out to be understood to be aspects of nature. But I suspect that by the time we have achieved this our understanding of nature will be quite different. That is, I suspect that we will only succeed in reducing minds to atoms when we have revolutionized our understanding of atoms in some way presently inconceivable.

I only have an intuition about the first step in this process, which is to bring time and the present moment-the now-into science and make it central to physics and prior to law. By embracing presentism and the openness of the future we radically recast the context for understanding what it means for anything-rock or atom or mind-to be part of nature. Lee Smolin

If we trace back this idea of Indeterminacy, what do we find? And how shall we find such an exchange as getting to the heart of the problem as to say, " it is quite wrong to try founding a theory on observable magnitudes alone. " Einstein goes on to say that it is the theory that decides what it is that we can observe.
"Possibly I did use this kind of reasoning," Einstein admitted, "but it is nonsense all the same. Perhaps I could put it more diplomatically by saying that it may be heuristically useful to keep in mind what one has actually observed. But on principle, it is quite wrong to try founding a theory on observable magnitudes alone. In reality the very opposite happens. It is the theory which decides what we can observe. You must appreciate that observation is a very complicated process. The phenomenon under observation produces certain events in our measuring apparatus. As a result, further processes take place in the apparatus, which eventually and by complicated paths produce sense impressions and help us to fix the effects in our consciousness. Along this whole path - from the phenomenon to its fixation in our consciousness — we must be able to tell how nature functions, must know the natural laws at least in practical terms, before we can claim to have observed anything at all. Only theory, that is, knowledge of natural laws, enables us to deduce the underlying phenomena from our sense impressions. When we claim that we can observe something new, we ought really to be saying that, although we are about to formulate new natural laws that do not agree with the old ones, we nevertheless assume that the existing laws — covering the whole path from the phenomenon to our consciousness—function in such a way that we can rely upon them and hence speak of'observations'...Physics and Beyond (pg67)
(bold added by me for emphasis)

In truest sensibility of the individual then is to seek some relation as to what by nature allows such observance in consciousness, so as to be able too, make decisions. Then, as too, "covering the whole path from the phenomenon to our consciousness—function in such a way that we can rely upon them and hence speak of 'observations'. " Any new theory then has to have had a foundation(causal chains) with which it can move forward and built upon that experience. While I truly speak to the process of science so as to demonstrate Einstein's wording and ways,  I am also speaking to the consciousness that uses this same information.

Monday, March 03, 2014

Laminar Flow




If symmetry is to have ever existed,  and,  you return to the original state, problems enter the picture because you are introducing "some thing" to the system? For example, you can only back up so far. The question is what does this fifth dimensional perspective allow you? You know Gravity and light have been joined?

Yes, when you change visual perspective, what does a line look like, as in viewing a cylindrical system, with such a viscosity?

You cannot show where droplets were injected, and to go beyond that point of submersion, an example of what begin in rotation would on reversibility, happen same. So, something is missing?

 My question is: could you ever learn the answer to an otherwise-intractable computational problem by jumping into a black hole?

Entanglement,  is not an option in such a system ? As is FTL, medium dependent? Changing viscosity rates show speed of light variance?

I want to discuss today reflect a different perspective: one that regards computation as no more “arbitrary” than other central concepts of mathematics, and indeed, as something that shows up even in contexts that seem incredibly remote from it, from the AdS/CFT correspondence to turbulent fluid flow. See:Recent papers by Susskind and Tao illustrate the long reach of computation
***


Fluid Velocity Profile
Visualization above,  has specific destination in relation to specificity of drop,  as to show distance from center?


Kaluza-Klein theory is a model which unifies classical gravity and electromagnetism. It was discovered by the mathematician Theodor Kaluza that if general relativity is extended to a five-dimensional spacetime, the equations can be separated out into ordinary four-dimensional gravitation plus an extra set, which is equivalent to Maxwell's equations for the electromagnetic field, plus an extra scalar field known as the "dilaton". Oskar Klein proposed that the fourth spatial dimension is curled up with a very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies.

Kaluza-Klein theory can be extended to cover the other fundamental forces - namely, the weak and strong nuclear forces - but a straightforward approach, if done using an odd dimensional manifold runs into difficulties involving chirality. The problem is that all neutrinos appear to be left-handed, meaning that they are spinning in the direction of the fingers of the left hand when they are moving in the direction of the thumb. All anti-neutrinos appear to be right-handed. Somehow particle reactions are asymmetric when it comes to spin and it is not straightforward to build this into a Kaluza-Klein theory since the extra dimensions of physical space are symmetric with respect to left-hand spinning and r-hand spinning particles.
Also to further speculate.....

Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies. (This occurs because electromagnetism is a U(1) symmetry theory and U(1) is simply the group of rotations around a circle).


Placing comment here until approved  or not approved.

Instituting a experimental argument is necessary, when t comes to symmetry in the realtor of viscosity and entanglement? Light in Ftl is medium dependent?

This sets up analogue example of the question of firewalls as to imply Black holes and information?

Layman wondering.

***

See also:

Friday, December 13, 2013

Symmetry Breaking and the Crab Nebula

The connection between superfluidity and symmetry breaking has had a glorious history. It has left us a rich legacy of fertile ideas, that seems far from exhaustion. PG 60 Superfluidity and Symmetry Breaking
You know while there have been processes unfolding with regard to supersymmetry, for the life of it,  I am having a hard time ever denying to myself that the result of any beginning had to have some emergent feature that arose from the very nature of the big bang itself.



So to then, one may see some signs in a biological sense,  as to the nature of evolution? So,  that all things can be defined in this way. But the issue then for me is how "information can exist, " so as to say that such a direction for that evolution,  as an emergent product,  must have some location with which such presence makes itself know(far left of the picture above)? Sure,  because of my ignorance, I would be asking how such information could have ever come into being so as to say that this universe is the one with which such expressions came to be, so I accept the universe as it is.

Click on image above and you create a larger view of a microscopic world

So to then,  for such a gap to exist.  I was most certainly thinking about the LHC's use with which such reductionism were being taken.  I was looking for such signatures as to wonder that if such a location is found then(QGP),  so we could say indeed,  the beginning of the universe, and the correlation drawn,  as to the ever reducibility pursuit as some relation to nature?


The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-ray energies, but data from orbiting observatories show unexpected variations. Since 2008, it has faded by 7 percent, activity likely tied to the environment around its central neutron star. (Video Credit: NASA's Goddard Space Flight Center)


Cosmologically it had to make sense too. So I  looked at events in the cosmos to help me understand what it is that was created in the moments we align ourselves too,as  in the LHC. While I looked at the picture(jet development and expression) above as to the timing with which such a environment, it is now reduced too, the Crab Nebula in its design. Would you deny the Crab Nebula had a previous showing with which the jets them self began to emerge?

An example then exists for me as to how such contributions that could arise in any nebula could have ever contributed to the way the universe is,  and if all such contributions taken to the same question,  helps to define the universe in ways that were preceded . Where that nature of the information is to reside.

So while we had found our limits with regard to Planck scale,  it is thought to me that such a symmetry had exist,  that all forms of that symmetry expresses itself as a forming dualistic nature,  for a symmetry breaking to exist,  and for such a division to take place from such a perfect place.

Friday, November 15, 2013

Energy Flow Without Impedance

It has always been of interest to me how one could get energy to flow quite freely without it succumb too the impurities that may have blocked that flow. I mean the correlation in my mind and being the layman that I am, could in itself demonstrate how my noise provided for the ability of someone not to seeing,  so as to just bungle up the message.

The development of superconductors that could be used in real-world applications, particularly power transmission, could transform the U.S. energy landscape. In addition to huge cost-savings, the higher capacity enabled by superconducting cables would help overcome urban power bottlenecks in today’s power grid, reducing the potential for blackouts and other power interruptions. It would also improve the cost-effective control of power flowing across the national grid and extend the operating life of existing high-load power lines. Furthermore, zero-loss transmission would enable the transfer of solar energy generated in parts of the U.S. where sunlight is most abundant to those where it is not, thus making other energy-saving technologies more practical and affordable. Complex Materials Unusual properties may lead to new superconductors

So I paragraph more those whose words who are not mine to see how the issues around that flow may be considered.. I must say a blog spot piece from Scientific American had got me thinking.



Photo Credit: “Superconducting wires by epitaxial grown on SSIFFS at Oak Ridge National Laboratory” taken on July 29, 2009 by the U.S. Department of Energy
 Photo Friday: Superconducting wires for long-distance electricity transmission By Melissa C. Lott

So to me I am always looking for processes that make energy flow in such a way, as to be correlated in the cosmos. I am looking for ways that energy can travel through and be described as cosmic particle collisions and subsequent, cosmic spallations that demonstrate the list of the ways in which this energy is being accounted for.

So it is important that the views we may of held in regard to how we see energy leak into unaccountability  had its day,  so as to see the current status of what is no longer counted as the missing energy any more.

Later studies and the investigation of much larger data samples have concluded that the event could not be ascribed to new physics but rather to some odd coincidence of detector effects and rare, but known, standard model processes. The Event From Another World
So what is left for me is this nagging feeling about what is explained as processes we do not quite understand and what we have always herald it as some inexplicable description of an unknown process. Herein,  it still remains a mystery and if you can move forward and make clearer the understanding of these processes in particle examinations then how much clear the impedance that such a mystery brings to our examination of the science behind these energy flows?

Of course these are materialistic version of ones grasp of the realities of things in the objective sense, but there is always more we can correlate in mind that we would have found such processes as similar in their expressions? So yes analogies also have to be most certainly clear as to those demonstrations as well.

Friday, October 04, 2013

A Deeper Search for Building Blocks of Nature

National High Magnetic Field Laboratory
The strange properties of superconducting materials called “cuprates” (bismuth strontium calcium copper oxide is shown here), which cannot be described by known quantum mechanical methods, may correspond to properties of black holes in higher dimensions.
According to modern quantum theory, energy fields permeate the universe, and flurries of energy in these fields, called “particles” when they are pointlike and “waves” when they are diffuse, serve as the building blocks of matter and forces. But new findings suggest this wave-particle picture offers only a superficial view of nature’s constituents. See:

Signs of a Stranger, Deeper Side to Nature’s Building Blocks 
By: Natalie Wolchover, Quanta Magazine, July 1, 2013

Thursday, April 25, 2013

The Least Resistance as Possible?



It is always of interest that communications over longer distances is made most capable and following an ole effect we see that where such tunneling allows such a process?

 Kapusta points out that the condensation temperature would be well below the cosmic background temperature, so it would be quite a feat to make this superfluid. However, Kapusta also notes that a sufficiently advanced civilization might use pulses of neutrino superfluid for long-distance communications.

On an abstract level how is one able to envision such a process unless such a hole provides for information to move through a center,  and information to move very fast.
Magnetism is a fundamental interaction shaping our physical world, at the basis of technologies such as magnetic recording or energy generation. Unlike electromagnetic waves, which can be routed and transmitted with waveguides to long distances, magnetic fields rapidly decay with distance. Here we present the concept, design, and properties of a magnetic hose which enables to transfer the static magnetic field generated by a source to an arbitrary distance, and along any given trajectory. We experimentally demonstrate the field transmission through the simplest hose realization using a superconducting shell with a magnetic core. We discuss possible application of magnetic hoses to harness quantum systems by addressable magnetic fields, in the context of quantum information processing.Magnetic hose: Routing and Long-distance Transportation of Magnetic Fields



See Also:


Tuesday, February 14, 2012

Music of the Quantum



The weird quantum nature of the atomic world challenges us to revise the way we view the world around us. We learn that our everyday world - built out of the myriad superposition of matter waves, has an unexpected capacity for new kinds of behavior and "self organization" that we are only just beginning to fathom. Music of the Quantum World









See Also: Superconductivity Dance Flash Mob

Thursday, September 29, 2011

Cassiopeia A

In conclusion, we have a rich panorama of experiments that all make use of neutrinos as probes of exotic phenomena as well as processes which we have to measure better to gain understanding of fundamental physics as well as gather information about the universe. See:Vernon Barger: perspectives on neutrino physics May 22, 2008


This image presents a beautiful composite of X-rays from Chandra (red, green, and blue) and optical data from Hubble (gold) of Cassiopeia A, the remains of a massive star that exploded in a supernova. Evidence for a bizarre state of matter has been found in the dense core of the star left behind, a so-called neutron star, based on cooling observed over a decade of Chandra observations. The artist's illustration in the inset shows a cut-out of the interior of the neutron star where densities increase from the crust (orange) to the core (red) and finally to the region where the "superfluid" exists (inner red ball). X-ray: NASA/CXC/UNAM/Ioffe/D. Page, P. Shternin et al.; Optical: NASA/STScI; Illustration: NASA/CXC/M. WeissSee Also:Superfluid and superconductor discovered in star's core

Illustration of Cassiopeia A Neutron Star
This is an artist's impression of the neutron star at the center of the Cassiopeia A supernova remnant. The different colored layers in the cutout region show the crust (orange), the higher density core (red) and the part of the core where the neutrons are thought to be in a superfluid state (inner red ball). The blue rays emanating from the center of the star represent the copious numbers of neutrinos that are created as the core temperature falls below a critical level and a superfluid is formed.
(Credit: Illustration: NASA/CXC/M.Weiss)


X-ray and Optical Images of Cassiopeia A
Two independent research teams studied the supernova remnant Cassiopeia A, the remains of a massive star, 11,000 light years away that would have appeared to explode about 330 years as observed from Earth. Chandra data are shown in red, green and blue along with optical data from Hubble in gold. The Chandra data revealed a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova. The data showed that it had cooled by about 4% over a ten-year period, indicating that a superfluid is forming in its core.
(Credit: X-ray: NASA/CXC/UNAM/Ioffe/D.Page,P.Shternin et al; Optical: NASA/STScI)
***

See: Galactic Neutrino Communications

Monday, February 22, 2010

Physicists Discover How to Entangle at High Temperatures

While I do not just like to echo in the world of information it is important to me to see how we can use entanglement to give us information about quantum gravity. Is it possible?


Entanglement is the weird quantum process in which two objects share the same existence. So a measurement on one object immediately influences the other, not matter how far apart they may be.
Entanglement is a strange and fragile thing. Sneeze and it vanishes. The problem is that entanglement is destroyed by any interaction with the environment and these interactions are hard to prevent. So physicists have only ever been able to study and exploit entanglement in systems that do not interact easily with the environment, such as photons, or at temperatures close to absolute zero where the environment becomes more benign.

In fact, physicists believe that there is a fundamental limit to the thermal energies at which entanglement can be usefully exploited. And this limit is tiny, comparable to very lowest temperatures.
Today, Fernando Galve at the University of the Balearic Islands in Spain and a few buddies, show how this limit can be dramatically increased. The key behind their idea is the notion of a squeezed state.
In quantum mechanics, Heisenberg's uncertainty principle places important limits on how well certain pairs of complementary properties can be observed. For example, the more accurately you measure position, the less well you can determine momentum. The same is true of energy and time and also of the phase and amplitude of a quantum state.

Physicists have learnt how to play around with these complementary observables to optimise the way they make measurements. They've discovered that they can trade their knowledge of one complementary observable for an improvement in the other. See more here:Physicists Discover How to Entangle at High Temperatures

Saturday, September 19, 2009

Macroscopic Similarities in a Microscopic World

Berkeley Lab Technology Dramatically Speeds Up Searches of Large DatabasesJon Bashor


In the world of physics, one of the most elusive events is the creation and detection of “quark-gluon plasma,” the theorized atomic outcome of the “Big Bang” which could provide insight into the origins of the universe. By using experiments that involve millions of particle collisions, researchers hope to find unambiguous evidence of quark-gluon plasma.

It's not just about "mathematical abstraction" but of seeing what good it can be used for. One can be in denial about the prospects but while it gives perspective to current situations, in that it helps to direct thinking forward instead feeling as if "you are just floating in space without being able to move."

Helpless are we? Not considering flapping one's wings?

Imagine indeed then,  trying to orientate direction toward the spacecraft when "floating in space" seems like having to attempt to ride a bicycle for the first time, so one should  know we must balance ourselves while doing the appropriate movements directed to where we want to go. It's something that has to be learn in theoretical enterprise while still held to earth's environ?

There might be a middle way. String theory's mathematical tools were designed to unlock the most profound secrets of the cosmos, but they could have a far less esoteric purpose: to tease out the properties of some of the most complex yet useful types of material here on Earth.

Both string theorists and condensed matter physicists - those studying the properties of complex matter phases such as solids and liquids - are enthused by the development. "I am flabbergasted," says Jan Zaanen, a condensed matter theorist from the University of Leiden in the Netherlands. "The theory is calculating precisely what we are seeing in experiments."
See:What string theory is really good for

So how has this helped the idea of "minimum length?"

Using the anti–de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid. See:String Theory, Quantum Phase Transitions, and the Emergent Fermi Liquid
So we have a beginning here for consideration within the frame work of Condense matter theorist state of existence? String theory is working along side of to direct the idea of matter formation?






***



Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

Proving that under certain conditions the quark-gluon plasma behaves according to such calculations is an exciting discovery for physicists, as it brings them a little closer to understanding how matter behaves at very small scales. But the challenge remains to determine the properties of the plasma under other conditions.

"We want to measure when the quark-gluon plasma behaves like a perfect fluid with zero viscosity, and when it doesn't," says Lauret. "When it doesn't match our calculations, what parameters do we have to change? If we can put everything together, we might have a model that reproduces everything we see in our detector."
See:Probing the Perfect Liquid with the STAR Grid
***

Looking back in time toward the beginning of our universe has been one of the things that have been occupying my time as I look through experimental procedures that have been developed. While LHC  provides a template of all the historical drama of science put forward,  it is also a platform in my mind for pushing forward perspective from "a beginning of time scenario" that helps us identify what happens in that formation. Helps us to orientate space and what happens to it.

It provides for me a place where we can talk about a large scale situation in terms of the universe as to what it contains to help motivate this universe to become what it is.

Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in an 1897 painting by Paul Gauguin: D'ou venons-nous? Que sommes-nous? Ou allons-nous? "Where do we come from? What are we? Where are we going?"
See here for more information.

So how did this process help orientate the things that were brought forward under the idea that the universe is a "cosmological box" that people want to talk about, while in my mind ,it became much more flexible topic when Venezianno began to talk about what came before. What existed outside that box. Abstractly, the box had six faces, to which direction of possibilities became part of the depth of this situation. It was a matter indeed of thinking outside the box.

I know that for some,  why waste one's time, but for me it is the motivator( not God as a creator, but of what actually propels this universe) and to what can exist now that draws my attention. It has been ever so slightly pushed "back in time" to see that the universe began with "microscopic processes that defines the state of the state of the universe in the way it is now." The LHC should be able to answer this although it is still restricted by the energy valuation given to this process.



A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Theoretical physicists have now used string theory to describe the quantum-critical state of electrons that can lead to high-temperature superconductivity. (Credit: Mai-Linh Doan / Courtesy of Wikimedia Commons) See:

Physical Reality Of String Theory Shown In Quantum-critical State Of Electrons

Quantum soup

But now, Zaanen, together with his colleagues Cubrovic and Schalm, are trying to change this situation, by applying string theory to a phenomenon that physicists, including Zaanen, have for the past fifteen years been unable to explain: the quantum-critical state of electrons. This special state occurs in a material just before it becomes superconductive at high temperature. Zaanen describes the quantum-critical state as a 'quantum soup', whereby the electrons form a collective independent of distances, where the electrons exhibit the same behaviour at small quantum mechanical scale or at macroscopic human scale.
See  Also:

Fermions and the AdS/CFT correspondence: quantum phase transitions and the emergent Fermi-liquid

A central mystery in quantum condensed matter physics is the zero temperature quantum phase transition between strongly renormalized Fermi-liquids as found in heavy fermion intermetallics and possibly high Tc superconductors. Field theoretical statistical techniques are useless because of the fermion sign problem, but we will present here results showing that the mathematics of string theory is capable of describing fermionic quantum critical states. Using the Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence to relate fermionic quantum critical fields to a gravitational problem, we compute the spectral functions of fermions in the field theory. Deforming away from the relativistic quantum critical point by increasing the fermion density we show that a state emerges with all the features of the Fermi-liquid. Tuning the scaling dimensions of the critical fermion fields we find that the quasiparticle disappears at a quantum phase transition of a purely statistical nature, not involving any symmetry change. These results are obtained by computing the solutions of a classical Dirac equation in an AdS space time containing a Reissner-Nordstrom black hole, where the information regarding Fermi-Dirac statistics in the field theory is processed by quasi-normal Dirac modes at the outer horizon.

Tuesday, August 04, 2009

Pushing Back Time

Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis

February 24, 2007 marks the 20th anniversary of one of the most spectacular events observed by astronomers in modern times, Supernova 1987A. The destruction of a massive star in the Large Magellanic Cloud, a nearby galaxy, spawned detailed observations by many different telescopes, including NASA's Chandra X-ray Observatory and Hubble Space Telescope. The outburst was visible to the naked eye, and is the brightest known supernova in almost 400 years.

This composite image shows the effects of a powerful shock wave moving away from the explosion. Bright spots of X-ray and optical emission arise where the shock collides with structures in the surrounding gas. These structures were carved out by the wind from the destroyed star. Hot-spots in the Hubble image (pink-white) now encircle Supernova 1987A like a necklace of incandescent diamonds. The Chandra data (blue-purple) reveals multimillion-degree gas at the location of the optical hot-spots. These data give valuable insight into the behavior of the doomed star in the years before it exploded.
See:Supernova 1987A:
Twenty Years Since a Spectacular Explosion
(Bold added by me for emphasis)


Supernova Starting Gun: Neutrinos

.....
Next they independently estimated how the hypothetical neutrinos would be picked up in a detector as massive as Super-Kamiokande in Japan, which contains 50,000 tons of water. The detector would only see a small fraction of the neutrinos. So the team outlined a method for matching the observed neutrinos to the supernova's expected luminosity curve to figure out the moment in time--to within about 10 milliseconds--when the sputtering star would have begun emitting neutrinos. In their supernova model, the bounce, the time of the first gravitational waves, occurs about 5 milliseconds before neutrino emission. So looking back at their data, gravitational wave hunters should focus on that point in time.
(again bold added for emphasis)

***


See Also:SciDAC Computational Astrophysics Consortium

Sunday, January 11, 2009

SuperCritical Fluid

What choice do I have but to quote myself.:)

At 11:47 AM, January 09, 2009, Blogger Plato said...
Superfluous is a mathematical construct for sure. Continuity, asked not from the condense matter theorist point of view as Jacque's remind, or, as Susskind speaks of Laughlin( was Susskind ever aware of Witten's statements?)


Edward WittenEdward Witten's Homepage

One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.

Now I write this link and quote above because it set my own mind in motion, from that point. I began looking at the experiments and trying to derive something that was consistent in that process that would lead into that same logical conclusion that we are "seeing" and "not seeing" what happens.

Once we know that there is one de Sitter solution, it is easy to find many more of them by just changing the values of the fluxes. Sujay Ashok and Michael Douglas of Rutgers University have recently estimated the number of different solutions to be at least 10100, which indicates an extremely rich landscape with many mountains, valleys, oceans and even volcanoes. Each minimum-energy point represents a different universe, and the height of that point is the value of the cosmological constant for that universe. Viewing the solution this way, the probability that one of these universes has a cosmological constant that is as small as is indicated by current experiments is actually non-zero. See:The string-theory landscape


You must know there is a reason that I am showing these articles just to provide consideration and will put up some information here soon that deals with this point.

I would say I do and am always impressed by Lubo's candidness, so I do not derive any solution to this process and it remains a troubling aspect of my research. The counter argument I produce I had discovering along the way to provide an example in a comment section that deals with what I am saying to Zephir here in this blog entry, under the idea of the landscape. I would ask that Lubos look a little closer and speak to the idea of the Landscape even though under the tutelage of Tom Banks, he specifics his reluctance.

You must also know that I do not align myself with any current research model( disaster scenarios specific LHC.Org) other then to say I recognize facets "of this thinking from my own research" and that this presentation speaks to that. If there is no math involved then how can it represent the landscape in thinking? Logical conclusions, follow logical math processes in String theory?

Letting our minds be consoled with the understanding that cosmic particle collisions take place on earth is the point I am making about seeing "the sun in gamma" and understanding that such measures allow us to see this way. It also helps us to understand that such a location(microscopic blackholes) allows information to travel faster then light in the medium of earth, so that we understand that things can travel "through and tunnel." Information is conserved.

A supercritical fluid is any substance at a temperature and pressure above its thermodynamic critical point. It can diffuse through solids like a gas, and dissolve materials like a liquid. Additionally, close to the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties to be "tuned". Supercritical fluids are suitable as a substitute for organic solvents in a range of industrial and laboratory processes. Carbon dioxide and water are the most commonly used supercritical fluids, being used for decaffeination and power generation respectively.
See Also:
  • animated presentation describing what a supercritical fluid is


  • ***







    For explanation of these animations see: The behaviour of dense particle systems.

    From certain perspective, the AWT is extrapolation of free fermion models of string field theory to zero dimension. These models are nothing very new in physics, as some physicists have assumed, the strings are composed from more fundamental particles (so called preons) already. The one-dimensional strings are just the lowest number of dimensions, which the formal math can handle without problem, while avoiding the singularities. The concept of environment composed from zero dimensional particles is naturally singular from formal math perspective, so it cannot use it. It can be replaced by one-dimensional strings partially, but here's a technical problem: such approximation leads to
    landscape of 10E+500 possible solutions
    , so it's unusable from practical reasons. While from particle model of Aether is evident, such system enables the only way of it's compactification, leading to dynamic mesh of one-dimensional density fluctuations (i.e. "strings") naturally - so no assumption of strings, no assumption of relativity and quantum mechanics postulates is required here at all. By such way, the zero-dimensional approach follows the Occam razor criterion, which
    minimizes the number of postulates
    in theories.
    See:27789 - 09/18/08 04:08 AM Re: Aether Wave Theory [Re: zorro1]

    ***


    See Also:

  • Are Strings as Spacetime an Emergent Phenomena?

  • Lost in Translation

  • Birth By Approximization
  • Saturday, July 26, 2008

    Is the LHC Leaking Energy?

    This is not to bring "the doom and gloom of micro blackhole creation" into the picture although I do see that the QGP arrived at can bring other perspectives forward, that would relegate questions to my mind.

    For instance.

    So to be clear then, the QGP is relativistic. This I understood already.

    This to me was an indication of string theories work to bring a GUT to the process. Of course I speculate. I am also speculating on the "loss of energy" in the collider process.

    MIT physicists create new form of matter by Lori Valigra, Special to MIT News Office June 22, 2005

    "In superfluids, as well as in superconductors, particles move in lockstep. They form one big quantum-mechanical wave," explained Ketterle. Such a movement allows superconductors to carry electrical currents without resistance.

    To cool it, brings the "same process," as to the condition extended to the QGP? This is the point I am trying to make. If they are aligned?


    Now the quote above was addressed for clarification, and was caught by a spam filter. So the answer may or may not be forth coming.

    As a common folk, I am asking the question from one of ignorance, and would of course like an answer . It is not my wish to "propagate the untruthfulness" that any good scientist would wish to find deteriorates the quality of our current scientific endeavours as a society.

    Friday, July 25, 2008

    The Extra Dimensions in the LHC

    String Theorists, for a million bucks, do you think you can answer "the question" and it's applicability?

    Now it should be clear here that while I speak of extra dimensions I am referring to that energy that is not accountable, "after the collision process and particle identifications have been calculated."

    For the first time the LHC reaches temperatures colder than outer space

    Geneva, 10 April 2007. The first sector of CERN1's Large Hadron Collider (LHC) to be cooled down has reached a temperature of 1.9 K (–271°C), colder than deep outer space! Although just one-eighth of the LHC ring, this sector is the world’s largest superconducting installation. The entire 27–kilometre LHC ring needs to be cooled down to this temperature in order for the superconducting magnets that guide and focus the proton beams to remain in a superconductive state. Such a state allows the current to flow without resistance, creating a dense, powerful magnetic field in relatively small magnets. Guiding the two proton beams as they travel nearly the speed of light, curving around the accelerator ring and focusing them at the collision points is no easy task. A total of 1650 main magnets need to be operated in a superconductive state, which presents a huge technical challenge. "This is the first major step in the technical validation of a full-scale portion of the LHC," explained LHC project leader Lyndon Evans.

    There are three parts to the cool down process, with many tests and intense checking in between. During the first phase, the sector is cooled down to 80 K, slightly above the temperature of liquid nitrogen. At this temperature the material will have seen 90% of the final thermal contraction, a 3 millimetre per metre shrinkage of steel structures. Each of the eight sectors is about 3.3 kilometres long, which means shrinkage of 9.9 metres! To deal with this amount of shrinkage, specific places have been designed to compensate for it, including expansion bellows for piping elements and cabling with some slack. Tests are done to make sure no hardware breaks as the machinery is cooled.

    The second phase brings the sector to 4.5 K using enormous refrigerators. Each sector has its own refrigerator and each of the main magnets is filled with liquid helium, the coolant of choice for the LHC because it is the only element to be in a liquid state at such a low temperature.

    The final phase requires a sophisticated pumping system to help bring the pressure down on the boiling Helium and cool the magnets to 1.9 K. To achieve a pressure of 15 millibars, the system uses both hydrodynamic centrifugal compressors operating at low temperature and positive-displacement compressors operating at room temperature. Cooling down to 1.9 K provides greater efficiency for the superconducting material and helium's cooling capacity. At this low temperature helium becomes superfluid, flowing with virtually no viscosity and allowing greater heat transfer capacity.

    “It's exciting because for more than ten years people have been designing, building and testing separately each part of this sector and now we have a chance to test it all together for the first time,” said Serge Claudet, head of the Cryogenic Operation Team. For more information and to see regular updates, see http://lhc.web.cern.ch/lhc/.

    The conditions are now established to allow testing of all magnets in this sector to their ultimate performance.


    I am not going to go into the relevance here but to describe how "I speculate" the "extra energy is lost" while delivering the expected results of the LHC microscope in it's efforts.

    This is based on the Navier–Stokes existence and smoothness that "may be" responsible for this loss. The understanding as I have come to see it is that the QGP by it's very nature is conclusively reached it total state, and that by reaching it, it brought in line, with the Superconductors relations. The principal here that a relativistic conditon is arrived at in the super fluid condition that I perceive is, in relation to the aspect of the Helium used to cool the LHC

    Navier-Stokes Equation

    Waves follow our boat as we meander across the lake, and turbulent air currents follow our flight in a modern jet. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to the Navier-Stokes equations. Although these equations were written down in the 19th Century, our understanding of them remains minimal. The challenge is to make substantial progress toward a mathematical theory which will unlock the secrets hidden in the Navier-Stokes equations.

    Wednesday, June 04, 2008

    SuperFluids

    MIT physicists create new form of matter by Lori Valigra, Special to MIT News Office June 22, 2005

    A superfluid gas can flow without resistance. It can be clearly distinguished from a normal gas when it is rotated. A normal gas rotates like an ordinary object, but a superfluid can only rotate when it forms vortices similar to mini-tornadoes. This gives a rotating superfluid the appearance of Swiss cheese, where the holes are the cores of the mini-tornadoes. "When we saw the first picture of the vortices appear on the computer screen, it was simply breathtaking," said graduate student Martin Zwierlein in recalling the evening of April 13, when the team first saw the superfluid gas. For almost a year, the team had been working on making magnetic fields and laser beams very round so the gas could be set in rotation. "It was like sanding the bumps off of a wheel to make it perfectly round," Zwierlein explained.

    "In superfluids, as well as in superconductors, particles move in lockstep. They form one big quantum-mechanical wave," explained Ketterle. Such a movement allows superconductors to carry electrical currents without resistance.

    The MIT team was able to view these superfluid vortices at extremely cold temperatures, when the fermionic gas was cooled to about 50 billionths of one kelvin, very close to absolute zero (-273 degrees C or -459 degrees F). "It may sound strange to call superfluidity at 50 nanokelvin high-temperature superfluidity, but what matters is the temperature normalized by the density of the particles," Ketterle said. "We have now achieved by far the highest temperature ever." Scaled up to the density of electrons in a metal, the superfluid transition temperature in atomic gases would be higher than room temperature.


    Now it is important that giving the circumstance with which I hold these views "to be the decomposable limits" on the collision process itself, the, "value of the decay" in initiating such a phase, it was important to me to explain how I thought new physics is to be established around our current value thinking in relation to the universe.

    This picture shows a classical vortex (Hurricane Isabel in summer 2003, NASA image ISS007E14887).

    So while we had done our research on the values of what a scientist means in regards to an image search on Google, I thought what better way but to introduce my efforts, as well to listing the essence of my understanding, by showing posts, that coincided with the prospective that I was and am establishing as a value in context of the acceleration of this universe.

    It is to establish how this universe can contain an "relativistic interpretation" about the "beginning and end" contained in this universe and was of some interest to me, as I charted the course and terms related to the searches for the microscopic blackhole holes and what it can ensue in it's decay.

    Photo credit: Andre Schirotzek (MIT)
    A condensate of Fermion pairs (red) is trapped in the waist of a focussed Laser beam (pink). Two additional Laser beams (green) rotate around the edges to stir the condensate. Current-carrying coils (blue) generate the magnetic field used for axial confinement and to tune the interaction strength by means of a Feshbach resonance. After releasing the atomic cloud from the electromagnetic trap, the cloud expands ballistically and inverts its aspect ratio. Resonant absorption imaging yields a density profile of the atomic cloud containing vortices.


    It was important that such an analogy serve to express that "what has always been" can move from one universe to another, by the interpretation of the false vacuum to the true and, by introducing this element in consideration of the lengths such a collision process can be taken too.

    This has always been of some issue to me about what can take our universe to a "zero point entropy consideration" while understanding that the larger context showing representational for this universe, holds an interesting view, that while large can be taken onto the environs that collisions processes may hold for further introspective views.

    Now I have been watching the interpretations of Inductive and Deductive valuations over at Bee's held in conversation of theBackreaction: The Block Universe and I am not totally satisfied that either party has really explained what "infinite regress means" while looking to the "decomposable element" with which I hold mathematics as a necessary understanding, while we look to explain the very principals and nature of this universe, and it's accelerations currently established.


    Photo credit: Andre Schirotzek (MIT) Vortices in Gases: Shown is a Vortex pattern in bosonic Sodium atoms (green cartoon) in a magnetic trap, Vortices in tightly bound Lithium molecules (red-blue cartoon) and a vortex lattice in loosely bound Fermion pairs created on the "BCS-side" of a Feshbach resonance.


    Just having established a link with backreactions block universe posting with this article, I see Phil has explained nicely what the process is to me, and how "infinite regress and decomposable element" are held in the same breathe. I have to give by example my understanding so that one sees this is not a "vacant thought process" with which I work.

    While one might think I belittle the process it is wholly by my environmental scanning and integrating view that I was able to deduce in regards to the "Plane of Simultaneity" an of "much greater depth" then what is assumed there at Backreaction.

    This statement of "much greater depth," must be seen in relation to what Tom Levenson in his first introductory article on Cosmic Variance, is revealing by, "Inverse Square law" introduction.

    Tom Levenson:....what would make current physical ideas as powerful and as intelligibly strange as Newton was able to make his story of a comet travelling from and to distances with out limit?


    Shadows, are the contention with which "cave views are enlisted" and remain, "in the the box thinkers." You had to know by my reply, that this depth was beyond the 3+1 view held , and pushing further, is the scope and intention of being lead by science, whether one thinks so or not by my representations.

    That, "in the box thinking" has never left the backreaction interpretations. Phenomenological order, must be introduced, in order to establish current scientific experiments with the actual hypothetical processes, where, such a hypothesis will take you too, leading from, "infinite regress and decomposable limits of definition." at the peak of this Aristotlean Arche. What is Self-Evident.

    Savas Dimopoulos:At close encounter the particles can exchange gravitons via the two extra dimensions, which changes the force law at very short distances. Instead of the “Newtonian inverse square law” you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.
    See:Newton's inverse-square (1/r2) law

    This is a inductive/deductive stance that a person assumes in moving through science, as I understood it.

    It is important that this process be established and identified as I reveal the thinking about the current state of the universe and how LHC experimental development, are giving new light, to Galactic communications. Microscopic Blackhole decay.

    Also too,

    The standard model of particle physics is a self-contained picture of fundamental particles and their interactions. Physicists, on a journey from solid matter to quarks and gluons, via atoms and nuclear matter, may have reached the foundation level of fields and particles. But have we reached bedrock, or is there something deeper? Savas Dimopoulos


    Such a question sets the pace for understanding the limits with which we have contained ourselves in regard to General Relativity, and yet, to think that such a result of General Relativity could have ever been embedded as a "beginning and end" in the explanation of the universe, is introduced by time reversals and such?

    Sunday, March 11, 2007

    Polar Flips

    Sometimes it is necessary to see the deep impact a thought could have as we try to understand the implications of a "sphere dropped in a viscously liquid" that we might find another correlation in how we see the photon affected in the gravitational field. Can we grasped the feeling illicitated to say we have some what of a deep impact in remembering to think the strange world of fluids could entertain us?

    Stokes' law

    In 1851, George Gabriel Stokes derived an expression for the frictional force exerted on spherical objects with very small Reynolds numbers (e.g., very small particles) in a continuous viscous fluid by solving the small fluid-mass limit of the generally unsolvable Navier-Stokes equations:



    where:

    is the frictional force,
    r is the Stokes radius of the particle,
    η is the fluid viscosity, and
    is the particle's speed.

    If the particles are falling in the viscous fluid by their own weight, then a terminal velocity, also known as the settling velocity, is reached when this frictional force combined with the buoyant force exactly balance the gravitational force. The resulting settling velocity is given by:



    where:

    Vs is the particles' settling velocity (cm/sec) (vertically downwards if ρp > ρf, upwards if ρp < ρf),
    r is the Stokes radius of the particle (cm),
    g is the standard gravity (cm/sec2),
    ρp is the density of the particles (g/cm3),
    ρf is the density of the fluid (g/cm3), and
    η is the fluid viscosity (dyne sec/cm2).


    Why are Planets Round?

    Q9:
    Would these fluids act differently on the Moon and at (on) different gravities


    I was loosing the train of thought within this post, and then the thought occurred me.

    Why are planets round. This is a "general question" which leads to how we see the formation of the planets?

    "isostatic adjustment"

    Start there. We also know what a "sphere of water" looks like in space?

    While the sphere was being thought of in regards to Stokes's Theorem, I was also thinking of the earth in relation to how we see gravity in regards to the earth already formed. The vicissitude, in which the earth exists within the cosmos. The moon.

    The rotating superfluid gas of fermions is pierced with the vortices, which are like mini-tornadoes. Image / Andre Schirotzek, MIT

    Bose-Einstein condensation of pairs of fermions that were bound together loosely as molecules was observed in November 2003 by independent teams at the University of Colorado at Boulder, the University of Innsbruck in Austria and at MIT. However, observing Bose-Einstein condensation is not the same as observing superfluidity. Further studies were done by these groups and at the Ecole Normale Superieure in Paris, Duke University and Rice University, but evidence for superfluidity was ambiguous or indirect.

    The superfluid Fermi gas created at MIT can also serve as an easily controllable model system to study properties of much denser forms of fermionic matter such as solid superconductors, neutron stars or the quark-gluon plasma that existed in the early universe.


    There is a special class of fluids that are called superfluids. Superfluids have the property that they can flow through narrow channels without viscosity. However, more fundamental than the absence of dissipation is the behavior of superfluids under rotation. In contrast to the example of a glass of water above, the rotation in superfluids is always inhomogeneous (figure). The fluid circulates around quantized vortex lines. The vortex lines are shown as yellow in the figure, and the circulating flow around them is indicated by arrows. There is no vorticity outside of the lines because the velocity near each line is larger than further away. (In mathematical terms curl v = 0, where v(r) is the velocity field.)

    See here for more on Attributes of Superfluids

    It is very possible that the information is inundating my thinking here yet without considering the context of the super fluid what requirements would fit the idea that earth is relevant when it comes to the molten core? Or how you see the magnetic field shifting in relation to the poles?

    Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a higher viscosity. All real fluids (except superfluids) have some resistance to shear stress, but a fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid (Symon 1971).


    I am quickly posting this and will have more to add. I wanted to speak directly to the idea of the super fluid. How the "irrotational value of the perfect fluid as a whole," could have it's leakages to the surface of the earth, as small vortices created.



    This computer simulation shows the Earth's interior as its magnetic field reverses, perhaps because of changes in the flow of molten iron in the core. Deep inside the Earth, the magnetic field arises as the fluid core oozes with hot currents of molten iron and this mechanical energy gets converted into electromagnetism. It is known as the geodynamo. In a car's generator, the same principle turns mechanical energy into electricity.

    No one knows precisely why the field periodically reverses, but scientists say the responsibility probably lies with changes in the turbulent flows of molten iron, which they envision as similar to the churning gases that make up the clouds of Jupiter.

    In theory, a reversal could have major effects because over the ages many aspects of nature and society have come to rely on the field's steadiness.




    Quasar posted a comment there that immediately made me think what the topic could mean in relation to the post he was commenting on. I thought of the earth's core as the subject was related, and thought how nice it would be to have such a "cylindrical channel that goes from pole to pole?"

    Well the viscosity of the fluid as it traverses this cylinder would give some nature to the charge as it passes through? I do not think it could be that simple, if we thought the iron molten as the viscosity had a direct relation to what we know of our magnetic field? We know the earth core is not so cylindrical, that we could the attribute of the superfluid in this case while looking at the iron molten lava

    So is it the iron in particular that gives us our strength based on it's fluid's nature?

    These changes in Earth’s magnetic fields from 1980 to 2000 may be harbingers of a shift in the magnetic poles

    Saturday, March 10, 2007

    Relativistic Fluid Dynamics

    The Navier-Stokes equations


    A bubble is a minimal-energy surface
    The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, are a set of equations that describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the product of changes in pressure and dissipative viscous forces (similar to friction) acting inside the fluid. These viscous forces originate in molecular interactions and dictate how viscous a fluid is. Thus, the Navier-Stokes equations are a dynamical statement of the balance of forces acting at any given region of the fluid.




    In educating myself I learnt to trust my intuition when it comes to defining the basis of "new physics" that was to emerge. As well as, the new particle manifestation that would arise from "specific points" on interaction. What was suppose to be our starting point. This is really difficult for me to put into words, yet, if you knew that there was a "change over/cross over point" and how was this defined? It seemed to me, we had to have a place that would do this.

    A more fundamental property than the disappearance of viscosity becomes visible if superfluid is placed in a rotating container. Instead of rotating uniformly with the container, the rotating state consists of quantized vortices. That is, when the container is rotated at speed below the first critical velocity (related to the quantum numbers for the element in question) the liquid remains perfectly stationary. Once the first critical velocity is reached, the superfluid will very quickly begin spinning at the critical speed. The speed is quantized - i.e. it can only spin at certain speeds.


    "Nothing" is difficult to talk about, and "empty space" is not really empty. So to think "nothing" is a very hard one for me to grasp. If one thinks about what "sprang into being" I of course had to find this "place of traversing" from "one state of being" to another. What things help us to define the nature of that point?



    Example of the viscosity of milk and water. Liquids with higher viscosities will not make such a splash.

    Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is commonly perceived as "thickness", or resistance to flow. Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a higher viscosity. All real fluids (except superfluids) have some resistance to shear stress, but a fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid (Symon 1971).


    I used the question mark not to befuddle those that read here or sanction any post to some idea about what the title following with a question mark, is worth so many points on the "flowery scale."

    On the other hand, gravity in the form of curved space would permeate the whole bulk of the higher dimensional spacetime …. Stephen Hawking1


    I shall have to define "flowery scale" sometime, but I would rather not give any credit to those who hold a position in science who have categorize people according to that same point system. Oh and please, do not consider the flowers less then what I hold as of high value in these "maturations" to be thought less then either.



    While we had been witness to the collider experiments we were also quite aware that that such events had to be taking place with earth, from event sources released in space.

    Relativistic Fluid Dynamics: Physics for Many Different Scales-Nils Andersson

    In writing this review, we have tried to discuss the different building blocks that are needed if one wants to construct a relativistic theory for fluids. Although there are numerous alternatives, we opted to base our discussion of the fluid equations of motion on the variational approach pioneered by Taub [108] and in recent years developed considerably by Carter [17, 19, 21]. This is an appealing strategy because it leads to a natural formulation for multi-fluid problems. Having developed the variational framework, we discussed applications. Here we had to decide what to include and what to leave out. Our decisions were not based on any particular logic, we simply included topics that were either familiar to us, or interested us at the time. That may seem a little peculiar, but one should keep in mind that this is a “living” review. Our intention is to add further applications when the article is updated. On the formal side, we could consider how one accounts for elastic media and magnetic fields, as well as technical issues concerning relativistic vortices (and cosmic strings). On the application side, we may discuss many issues for astrophysical fluid flows (like supernova core collapse, jets, gamma-ray bursts, and cosmology).

    In updating this review we will obviously also correct the mistakes that are sure to be found by helpful colleagues. We look forward to receiving any comments on this review. After all, fluids describe physics at many different scales and we clearly have a lot of physics to learn. The only thing that is certain is that we will enjoy the learning process!


    Spacetime Curvatures

    Flat space time? The thought there are strong gravitational forces at work and where are these located? Can there "be" amidst this strong curvature, the idea that a super fluid born, would have a place where a state of inertia could exist? I thought quickly of what happens when the blackhole collapses and what could come of it?

    Of course this concept of inertia is strong in my mind but would need better clarifications as I am relaying it here in this circumstance.

    But looking for these locations in Lagrangian views of the Sun Earth relation, it seemed viable to me that such a state could have gone from a very strong gravitational inclination( our suns, increase temperatures of the collapsing blackhole) to one that is "very free" and "not flat" but would allow information both ways(from before to now) to be traversed, as if in a jet or cylinder. So that the space around it would be expression not only the earlier constituents of the universe before this translation but manifest into the new physics with which would motive this universe, new particle manifestation, from what did not exist before.

    1The Universe in a Nutshell, by Stephen Hawking. Bantam Books, ISBN 0-553-80202-X-Chapter 7, Page 181