Pages

Showing posts with label Sound. Show all posts
Showing posts with label Sound. Show all posts

Wednesday, June 25, 2014

LHC Sound



Sonification is the process of creating sounds that carry information. Musical compositions carry information in the sense that they often describe a place, a time or a feeling; the associations we make between sonic properties such as pitch and physical properties such as speed or size, come to us without effort. The grand aim of the LHCsound project is to ‘dorkify’ the process of encoding information in sound. Our attempts to capture the behaviour of the recently discovered Higgs boson in sounds are presented for your wonder and bafflement. SEE: Lily Asquith

Saturday, December 21, 2013

Weber Bars Ring True?



Gravitational Radiation

Gravitational waves have a polarization pattern that causes objects to expand in one direction, while contracting in the perpendicular direction. That is, they have spin two. This is because gravity waves are fluctuations in the tensorial metric of space-time.


How would you map this above?

WMAP image of the Cosmic Microwave Background Radiation


Here's the thing for those blog followers who are interested in the application of sound as a visual representation of an external world of senses.



 In this example I’m going to map speed to the pitch of the note, length/postion to the duration of the note and number of turns/legs/puffs to the loudness of the note.See: How to make sound out of anything.

I have my reasons for looking at the trail that began with Gravitational wave research and development. If we are accustom to seeing and concreting all that reality has for us,  can a question be raised in mind with how one has been shocked by an anomaly?

I am not asking for anyone  to abandon their views on the science of,  just respect that while not following the rules of  science here as to my motivational underpinnings, I have asked if science can see gravity in ways that have not be thought of before.  This is not to counter anything that has been done before.

The historic approach to Gravitational Research was important as well,  to trace it back to it's beginning.

Can we use such measures to exemplify an understanding of the world we live according  to a qualitative approach? This has occupied my thoughts back to when I first blogged about JosephWeber in 2005. Here is a 2000 article linked.
In the late 1950s, Weber became intrigued by the relationship between gravitational theory and laboratory experiments. His book, General Relativity and Gravitational Radiation, was published in 1961, and his paper describing how to build a gravitational wave detector first appeared in 1969. Weber's first detector consisted of a freely suspended aluminium cylinder weighing a few tonnes. In the late 1960s and early 1970s, Weber announced that he had recorded simultaneous oscillations in detectors 1000 km apart, waves he believed originated from an astrophysical event. Many physicists were sceptical about the results, but these early experiments initiated research into gravitational waves that is still ongoing. Current gravitational wave experiments, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA), are descendants of Weber's original work. See:Joseph Weber 1919 - 2000
***



Space, we all know what it looks like. We've been surrounded by images of space our whole lives, from the speculative images of science fiction to the inspirational visions of artists to the increasingly beautiful pictures made possible by complex technologies. But whilst we have an overwhelmingly vivid visual understanding of space, we have no sense of what space sounds like.

  See previous entries on "Weber Bar" by typing in Search Feature on side bar. See also below.


Monday, December 09, 2013

How Does This Make You Feel?



Scientists played the song to 40 women and found it to be more effective at helping them relax than songs by Enya, Mozart and Coldplay.See:Warning over 'most relaxing song ever created

Monday, July 22, 2013

The Universe of Sound: Subodh Patil - Collide@CERN Inspiration Part



Dr. Subodh Patil is a cosmologist at CERN and is the inspiration partner for Bill Fontana, 2012-2013 Prix Ars Electronica Collide@CERN winner, during his residency at CERN. Bill began his 3-month residency at CERN at an event called "The Universe of Sound" on July 4th, 2013, in the CERN Globe of Science & Innovation. In this excerpt from this event, Dr. Patil explains the parallels between physics, cosmology, sound, and music.
Watch the video of Bill Fontana's talk here: http://www.youtube.com/watch?v=6Zjy8v...




See:

Bernie Krause: The voice of the natural world


http://www.ted.com/talks/bernie_krause_the_voice_of_the_natural_world.html

Bernie Krause has been recording wild soundscapes -- the wind in the trees, the chirping of birds, the subtle sounds of insect larvae -- for 45 years. In that time, he has seen many environments radically altered by humans, sometimes even by practices thought to be environmentally safe. A surprising look at what we can learn through nature's symphonies, from the grunting of a sea anemone to the sad calls of a beaver in mourning. 

Monday, July 15, 2013

The Universe of Sound: Bill Fontana - Collide@CERN Artist


Bill Fontana is a renowned American sound sculptor who studied with John Cage and is the 2012-2013 Prix Ars Electronica Collide@CERN winner. He began his 2-month residency at CERN with an event entitled "The Universe of Sound" on 4 July 2013, in the CERN Globe of Science & Innovation, from which this excerpt was taken. Guided by his mantra, "All sound is music," Fontana gives samples of his previous work as well as some hints of what is to come during his residency. 

Watch the video of Dr. Subodh Patil, CERN cosmologist and inspiration partner for Bill Fontana: http://www.youtube.com/watch?v=0mCkKD...

 Find out more via http://arts.web.cern.ch/collide/digit...





See Also:


Monday, July 01, 2013

Songs of the Stars: the Real Music of the Spheres



Songs of the Stars: the Real Music of the Spheres

Recording Details Speaker(s): Donald Kurtz
Collection/Series: Perimeter Institute Public Lecture Series
Perimeter Institute Recorded Seminar Archive (PIRSA).


Different oscillation modes penetrate to different depths inside a star.


Asteroseismology (from Greek ἀστήρ, astēr, "star"; σεισμός, seismos, "earthquake"; and -λογία, -logia) also known as stellar seismology[1][2] is the science that studies the internal structure of pulsating stars by the interpretation of their frequency spectra. Different oscillation modes penetrate to different depths inside the star. These oscillations provide information about the otherwise unobservable interiors of stars in a manner similar to how seismologists study the interior of Earth and other solid planets through the use of earthquake oscillations.[2]

Asteroseismology provides the tool to find the internal structure of stars. The pulsation frequencies give the information about the density profile of the region where the waves originate and travel. The spectrum gives the information about its chemical constituents. Both can be used to give information about the internal structure. Astroseismology effectively turns tiny variations in the star's light into sounds.[3]


Contents

Oscillations

The oscillations studied by asteroseismologists are driven by thermal energy converted into kinetic energy of pulsation. This process is similar to what goes on with any heat engine, in which heat is absorbed in the high temperature phase of oscillation and emitted when the temperature is low. The main mechanism for stars is the net conversion of radiation energy into pulsational energy in the surface layers of some classes of stars. The resulting oscillations are usually studied under the assumption that they are small, and that the star is isolated and spherically symmetric. In binary star systems, stellar tides can also have a significant influence on the star's oscillations. One application of asteroseismology is neutron stars, whose inner structure cannot be directly observed, but may be possible to infer through studies of neutron-star oscillations.[citation needed]


Wave types


Waves in sun-like stars can be divided into three different types;[4]
  • p-mode: Acoustic or pressure (p) modes,[2] driven by internal pressure fluctuations within a star; their dynamics being determined by the local speed of sound.
  • g-mode: Gravity (g) modes, driven by buoyancy,[5]
  • f-mode: Surface gravity (f) modes, akin to ocean waves along the stellar surface.[6]
Within a sun-like star, such as Alpha Centauri, the p-modes are the most prominent as the g-modes are essentially confined to the core by the convection zone. However, g-modes have been observed in white dwarf stars.[5]


Solar seismology


Helioseismology, also known as Solar seismology, is the closely related field of study focused on the Sun. Oscillations in the Sun are excited by convection in its outer layers, and observing solar-like oscillations in other stars is a new and expanding area of asteroseismology.

Space missions


A number of active spacecraft have asteroseismology studies as a significant part of their mission.
  • MOST – A Canadian satellite launched in 2003. The first spacecraft dedicated to asteroseismology.
  • COROT – A French led ESA planet-finder and asteroseismology satellite launched in 2006
  • WIRE – A NASA satellite launched in 1999. A failed infrared telescope now used for asteroseismology.
  • SOHO – A joint ESA / NASA spacecraft launched in 1995 to study the Sun.
  • Kepler – A NASA planet-finder spacecraft launched in 2009 that is currently making asteroseismology studies of over a thousand stars in its field, including the now well-studied subgiant KIC 11026764.[7][8]

Red giants and asteroseismology


Red giants are a later stage of evolution of sun-like stars after the core hydrogen fusion ceases as the fuel runs out. The outer layers of the star expand by about 200 times and the core contracts. However, there are two different stages, first one when there is fusion of hydrogen in a layer outside the core, but none of helium in the core, and then a later stage when the core is hot enough to fuse helium. Previously, these two stages could not be directly distinguished by observing the star's spectrum, and the details of these stages were incompletely understood. With the Kepler mission, asteroseismology of hundreds of relatively nearby red giants[9] enabled these two types of red giant to be distinguished. The hydrogen-shell-burning stars have gravity-mode period spacing mostly ~50 seconds and those that are also burning helium have period spacing ~100 to 300 seconds. It was assumed that, by conservation of angular momentum, the expansion of the outer layers and contraction of the core as the red giant forms would result in the core rotating faster and the outer layers slower. Asteroseismology showed this to indeed be the case[10] with the core rotating at least ten times as fast as the surface. Further asteroseismological observations could help fill in some of the remaining unknown details of star evolution.


References

  1. ^ Ghosh, Pallab (23 October 2008). "Team records 'music' from stars". BBC News. Retrieved 2008-10-24.
  2. ^ a b c Guenther, David. "Solar and Stellar Seismology". Saint Mary's University. Retrieved 2008-10-24.
  3. ^ Palmer, Jason (20 February 2013). "Exoplanet Kepler 37b is tiniest yet - smaller than Mercury". BBC News. Retrieved 2013-02-20.
  4. ^ Unno W, Osaki Y, Ando H, Saio H, Shibahashi H (1989). Nonradial Oscillations of Stars (2nd ed.). Tokyo, Japan: University of Tokyo Press.
  5. ^ a b Christensen-Dalsgaard, Jørgen (June 2003). "Chapter 1" (PDF). Lecture Notes on Stellar Oscillations (5th ed.). p. 3. Retrieved 2008-10-24.
  6. ^ Christensen-Dalsgaard, Jørgen (June 2003). "Chapter 2" (PDF). Lecture Notes on Stellar Oscillations (5th ed.). p. 23. Retrieved 2008-10-24.
  7. ^ Metcalfe, T. S.; et al (2010-10-25). "A Precise Asteroseismic Age and Radius for the Evolved Sun-like Star KIC 11026764". The Astrophysical Journal 723 (2): 1583. arXiv:1010.4329. Bibcode:2010ApJ...723.1583M. doi:10.1088/0004-637X/723/2/1583.
  8. ^ "Graphics for 2010 Oct 26 webcast – Images from the Kepler Asteroseismology Science Consortium (KASC) webcast of 2010 Oct 26". NASA. 2010-10-26. Retrieved 3 November 2010.
  9. ^ Bedding TR, Mosser B, Huber D, Montalbaan J, et al. (Mar 2011). "Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars". Nature 471 (7340): 608–611. arXiv:1103.5805. Bibcode:2011Natur.471..608B. doi:10.1038/nature09935. PMID 21455175.
  10. ^ Beck, Paul G.; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; et al. (Jan 2012). "Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes". Nature 481 (7379): 55–57. arXiv:1112.2825. Bibcode:2012Natur.481...55B. doi:10.1038/nature10612. PMID 22158105.

 

External links






See Also:


Saturday, April 20, 2013

Applying Color to the Real World

Spectra are complex because each spectrum holds a wide variety of information. For instance, there are many different mechanisms by which an object, like a star, can produce light - or using the technical term for light, electromagnetic radiation. Each of these mechanisms has a characteristic spectrum. Let's look at a spectrum and examine each part of it. Introduction to Spectroscopy 


 
Click the image to open in full size.
Image Credit: NASA/JPL-Caltech/STScI/CXC/SAO

This stunning false-color picture shows off the many sides of the supernova remnant Cassiopeia A, which is made up of images taken by three of NASA's Great Observatories, using three different wavebands of light. Infrared data from the Spitzer Space Telescope are colored red; visible data from the Hubble Space Telescope are yellow; and X-ray data from the Chandra X-ray Observatory are green and blue. See: Image of the Day

Why might one suggest spectroscopy and it's ramifications?

 While studying the question of how any of us may exist as emergent beings how might one find them self expressed as matter participants of this reality? What would have began first as to suggest that we used more then the typed neurons(stem cell) to shift the constructive nature of our constitutions as revealed in our DNA structure, as the forms in which we take? So there is already a pattern established in nature that we must look for?

What began as the motivation for expression as to insight that such energy is more then, is described as, is a continue change and expression of the evolutionary distribution of what we have become?


The crystalline state is the simplest known example of a quantum , a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. Robert Laughlin

What was that motivation then?



This image depicts the interaction of nine plane waves—expanding sets of ripples, like the waves you would see if you simultaneously dropped nine stones into a still pond. The pattern is called a quasicrystal because it has an ordered structure, but the structure never repeats exactly. The waves produced by dropping four or more stones into a pond always form a quasicrystal.

Because of the wavelike properties of matter at subatomic scales, this pattern could also be seen in the waveform that describes the location of an electron. Harvard physicist Eric Heller created this computer rendering and added color to make the pattern’s structure easier to see. See: What Is This? A Psychedelic Place Mat?
See: 59. Medieval Mosque Shows Amazing Math Discovery



See Also:


Monday, April 15, 2013

Colour and Sound

Sounds and colors are "metered measures?" It is something we have designed in order to account for communication of certain facts? While I present some quotations here for consideration, it is also in the quest to understand what illusion and reality can mean when not all parts of the consensus can agree on what constitute what.
To “hear” the data we can map physical properties (The Data) to audible properties (The Sound) in pretty much any way we choose. For a physicist, an obvious way to do this might be to map speed to pitch. I think this is obvious for a physicist because both of these things are measured “per second” (pitch or frequency is measured in Hertz, which means vibrations per second). But we don’t have to do the obvious, we can map any physical property to any audible property. In this example I’m going to map speed to the pitch of the note, length/position to the duration of the note and number of turns/legs/puffs to the loudness of the note. Now I have to choose starting positions and ranges. When I do this I have to consider that:How to make sound out of anything.
We know that colour is a psychophysical experience of an observer which changes from observer to observer and is therefore impossible to replicate absolutely. In order to quantify colour in meaningful terms we must be able to measure or represent the three attributes that together give a model of colour perception. i.e. light, object and the eye. All these attributes have been standardised by the CIE or Commission Internationale de l'Eclairage. The colours of the clothes we wear and the textiles we use in our homes must be monitored to ensure that they are correct and consistent. Colour measurement is therefore essential to put numbers to colour in order to remove physical samples and the interpretation of results.See:Colour measuring equipment
In the arts and of painting, graphic design, and photography, color theory is a body of practical guidance to color mixing and the visual impact of specific color combinations. Although color theory principles first appear in the writings of Alberti (c.1435) and the notebooks of Leonardo da Vinci (c.1490), a tradition of "colory theory" begins in the 18th century, initially within a partisan controversy around Isaac Newton's theory of color (Opticks, 1704) and the nature of so-called primary colors. From there it developed as an independent artistic tradition with only sporadic or superficial reference to colorimetry and vision science.See: Color Theory
CIE L*a*b* (CIELAB) is the most complete color model used conventionally to describe all the colors visible to the human eye. It was developed for this specific purpose by the International Commission on Illumination (Commission Internationale d'Eclairage, hence its CIE initialism). The * after L, a and b are part of the full name, since they represent L*, a* and b*, derived from L, a and b. CIELAB is an Adams Chromatic Value Space. The three parameters in the model represent the lightness of the color (L*, L*=0 yields black and L*=100 indicates white), its position between magenta and green (a*, negative values indicate green while positive values indicate magenta) and its position between yellow and blue (b*, negative values indicate blue and positive values indicate yellow). The Lab color model has been created to serve as a device independent model to be used as a reference. Therefore it is crucial to realize that the visual representations of the full gamut of colors in this model are never accurate. They are there just to help in understanding the concept, but they are inherently inaccurate. Since the Lab model is a three dimensional model, it can only be represented properly in a three dimensional space.See: CIE 1976 L*, a*, b* Color Space (CIELAB)
So in a sense we have developed "a method" by which application of color in this case would be used. Is it highly subjective in one's own case without some kind of metered measure and one would have to consider, by which consensus such a model would be applied(production of specific colours chemically induced for instance) to have a desired effect.

Evan Grant Making sound visible through cymatics 

I give this link above in order to establish that sound can have an architectural correlation in terms of a vibrational signature. Has a qualitative signature of sorts.So for me as I moved ahead in this blog format it was important for me to see how sound can be used.
Space, we all know what it looks like. We've been surrounded by images of space our whole lives, from the speculative images of science fiction to the inspirational visions of artists to the increasingly beautiful pictures made possible by complex technologies. But whilst we have an overwhelmingly vivid visual understanding of space, we have no sense of what space sounds like.Honor Harger: A history of the universe in sound
So while one might consider colorimetric space here one might convert such a space to what every point in that space represents in terms of a color? So you devise parameters.
Gravity is usually measured in units of acceleration. In the SI system of units, the standard unit of acceleration is 1 metre per second squared (abbreviated as m/s2). Other units include the gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (gn), equal to 9.80665 m/s2. The value of the gn approximately equals the acceleration due to gravity at the Earth's surface (although the actual acceleration g varies fractionally from place to place). See: Gravimetry
It’s just a matter of lasers and mirrors, but using Michelson’s 19th-century techniques and LIGO’s 21st-century technology, scientists will soon “hear” a phenomenon first predicted by Einstein’s famous 20th-century theory.See: LIGO 02

Thursday, February 07, 2013

The Nano Guitar

Modulating Phases States:Neural Correlates to Consciousness




Dustin W. Carr, under the direction of Professor Harold G. Craighead, created the nano guitar in the Cornell Nanofabrication Facility in 1997. The idea came about as a fun way to illustrate nanotechnology, and it did capture popular attention.[1] It is disputed as to whether the nano guitar should be classified as a guitar, but it is the common opinion that it is in fact a guitar.[2]

Nanotechnology miniaturizes normal objects, in this case a guitar. It can be used to create tiny cameras, scales and listening devices. An example of this is smart dust, which can be either a camera or a listening device smaller than a grain of sand.[3] A nanometer is one-billionth of a meter. For comparison, a human hair is about 200,000 nanometers thick. The nano guitar is about as long as one-twentieth of the diameter of a human hair, 10 micrometers or 10,000 nanometers long. The six strings are 50 nanometers wide each. The entire guitar is the size of an average red blood cell. The guitar is carved from a grain of crystalline silicon by scanning a laser over a film called a 'resist'. This technique is called Electrobeam Lithography. It can be played by tiny lasers in an atomic force microscope, and these act as the pick. The Nano Guitar is 17 octaves higher than a normal guitar. Even if its sound were amplified, it could not be detected by the human ear.[4]

The nano guitar illustrates inaudible technology that is not meant for musical entertainment. The application of frequencies generated by nano-objects is called sonification. Such objects can represent numerical data and provide support for information processing activities of many different kinds that producing synthetic non-verbal sounds.[5] Since the manufacture of the nano-guitar, researchers in the lab headed by Dr. Craighead have built even tinier devices. One thought is that they may be useful as tiny scales to measure tinier particles, such as bacteria, which may aid in diagnosis.[6] More recently, physicists at the University of Washington published an article discussing the hope that the technique will be useful to test aspects of what until now has been purely theoretical physics, and they also hope it might have practical applications for sensing conditions at atomic and molecular scales.[7]

References

  1. ^ Payne J, Phillips M, The World’s Best Book. Running Press, 2009. ISBN 0-7624-3755-3, p. 109
  2. ^ Schummer J, Baird D. Nanotechnology Challenges: implications for philosophy, ethics and society. World Scientific, 2006. ISBN 981-256-729-1, pp. 50–51; Nordmann A. Noumenal Technology: Reflections on the incredible tininess of nano. Techne: Research in Philosophy and Technology 8(3), 2005 read online, accessed August 15, 2010
  3. ^ Piddock, Charles. Future Tech. Creative Media Applications, Inc. 2009. ISBN 978-1-4263-0468-2, pp. 35–39
  4. ^ Physics News Update 659(3), October 28, 2003, The High and Low Notes of the Universe read online (accessed 15 August, 2010)
  5. ^ Barrass S, Kramer G. Using sonification. Multimedia Systems 7:23–31, 1999.
  6. ^ “Nano becomes ‘atto’ and will soon be ‘zepto’ for Cornell.” Azonanotechnology, April, 2004. read online, accessed 15 August, 2010
  7. ^ Wang Z. et al. Phase transitions of adsorbed atoms on the surface of a carbon nanotube. Science 327:552, 2010 DOI 10.1126/science.1182507 read article online, accessed August 15, 2010

Further reading on nanotechnology

  • Drexler, K. Eric, Nanosystems, Molecular Machinery, Manufacturing and Computation. P. 254-257. John Wiley and Son Inc. Canada. 1992. ISBN 0-471-57518-6.
  • Mulhall, Douglas, Our Molecular Future. Prometheus Books. 59 John Glenn Drive, Amherst, NY. 2002. ISBN 1-57392-992-1
  • Piddock, Charles. Future Tech. P. 35-39 Creative Media Applications, Inc. 2009. ISBN 978-1-4263-0468-2
  • Sargent, Ted. The Dance of Molecules. Thunder’s Mouth Press, New York, NY. 2006. ISBN 1-56025-809-8
  • Storrs Hall Ph.D., J., Nanofuture. P. 9-10. Prometheus Books. 59 John Glenn Drive, Amherst, NY. 2005. ISBN 1-59102-287-8

External links





Cornell University researchers already have been able to detect the mass of a single cell using submicroscopic devices. Now they're zeroing in on viruses. And the scale of their work is becoming so indescribably small that they have moved beyond the prefixes "nano" "pico" and "femto" to "atto." And just in sight is "zepto."

Members of the Cornell research group headed by engineering professor Harold Craighead report they have used tiny oscillating cantilevers to detect masses as small as 6 attograms by noting the change an added mass produces in the frequency of vibration.

Their submicroscopic devices, whose size is measured in nanometers (the width of three silicon atoms), are called nanoelectromechanical systems, or NEMS. But the masses they measure are now down to attograms. The mass of a small virus, for example, is about 10 attograms. An attogram is one-thousandth of a femtogram, which is one-thousandth of a picogram, which is one-thousandth of a nanogram, which is a billionth of a gram.‘Nano’ Becomes ‘Atto’ and Will Soon Be ‘Zepto’ for Cornell - New Technology


See Also:

Saturday, February 02, 2013

Delving Deeper into the Subject of Binaural Beats

Scheme showing the course of the fibers of the lemniscus; medial lemniscus in blue, lateral in red. (Superior olivary nucleus is labeled at center right.) The superior olivary nucleus is considered part of the pons and is a part of the auditory system, aiding the perception of sound.


It is important that people understand that I hold no credentials in terms of physiology or credentials as a scientist. This is purely from a layman subjective questionings,  as to the viability of what helps to produce effective layering of consciousness's  abilities to explore.

Why is this effective and what is accomplished?

Physiology


The sensation of binaural beats is believed to originate in the superior olivary nucleus, a part of the brain stem. They appear to be related to the brain's ability to locate the sources of sounds in three dimensions and to track moving sounds, which also involves inferior colliculus (IC) neurons.[17] Regarding entrainment, the study of rhythmicity provides insights into the understanding of temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres.[18] A study of aphasic subjects who had a severe stroke versus normal subjects showed that the aphasic subject could not hear the binaural beats whereas the normal subjects could.[19]

It is healthy to retain some  skepticism as a method for sounding  the process for discovery about truth in the quest for what affects can be established. So while retaining these questions in mind,  the effect of what can be gained from the idea of Binaural beat as a tool for development of consciousness is an important one to me.

I am of course drawn to those comments that deal directly with the explanations of science and physiology .




Studies have shown a neurological basis of binaural beats perception which have assisted in identifying subcortical regions associated with processing phase differences between sounds. These have been found to be generated by neurons in the inferior colliculus, auditory cortex [15], [16] and the medial olivary nucleus, all of which are thought to be involved in processing and integration of auditory stimuli [17]. The effect of binaural beats on psychological and biological aspects however has been somewhat less clear.

A final consideration is the use of pink noise, overlaid music or sound, to generate some sort of effect. One study [33] compared music with an embedded binaural beat to music without one and generated a significant decrease in pain medication both during and after an operation, however the study was not controlled as participants were allowed to choose their own music. Also, other studies using pink noise [8], [18] have not detected entrainment, but have found psychological changes previously discussed. Comparing pink noise with a binaural beat, without and a control and subsequent effects on electrophysiological and psychological factors may be of interest.

In conclusion, this study aimed to examine if binaural beats were able to alter psychological processes and entrain cortical frequencies. Furthermore it aimed to examine if personality traits modulated entrainment. No statistically significant changes or relationships were detected between binaural beat stimulation at Beta and Theta frequencies and white noise control conditions in any personality trait, the vigilance task or EEG power spectra analysis. These results suggest that relatively short presentation steady state binaural beat stimulation at Beta and Theta frequencies are insufficient to generate entrainment and in turn this lack of entrainment does not seem to be related to personality traits. Additionally it appears that short presentation stimulation of binaural beats is ineffective at altering vigilance.A High-Density EEG Investigation into Steady State Binaural Beat Stimulation




OBJECTIVE:

Brainwave entrainment (BWE), which uses rhythmic stimuli to alter brainwave frequency and thus brain states, has been investigated and used since the late 1800s, yet many clinicians and scientists are unaware of its existence. We aim to raise awareness and discuss its potential by presenting a systematic review of the literature from peer-reviewed journals on the psychological effects of BWE.A comprehensive review of the psychological effects of brainwave entrainment.


See Also:


Sunday, December 30, 2012

General Thoughts About Schuman Response

The Tesla coil wireless transmitter
U.S. Patent 1,119,732


There might have been some confusion around what was implied here with regard to BB's(Binaural Beats) and the affective causation suggested by what I see as  inherent on a global level with regard to consciousness. I wrote," While it is of biological significance the BB's are in question here as one might wonder about schumann response on a global level. "


The first documented observations of global electromagnetic resonance were made by Nikola Tesla at his Colorado Springs laboratory in 1899. This observation led to certain conclusions about the electrical properties of the Earth, and which made the basis for his idea for wireless energy transmission.[6]

I mentioned  "the principal" as to imply historical content as to the idea of resource management attributions when it came to the realization that capital could be induced by fragmentation and allotting packets. These as salable items to the general public. This application,  is the basis of some of my complaints about what was already inherent and free in society. It only became a product once it was thought to being compartmentalize.

 With wireless power, efficiency is the more significant parameter. A large part of the energy sent out by the generating plant must arrive at the receiver or receivers to make the system economical

In this sense, electrical generation, other then use of wire transmission, was at the time, the only means as to the metering capable of being sold as a packet.

1904 image of Wardenclyffe Tower located in Shoreham, Long Island, New York. The 94 by 94 ft (29 m) brick building was designed by architect Stanford White.[1]



PURPOSE: To show the two-dimensional standing waves on the surface of a square or circular plate.

If we had seen and understood the early formation that begins with the understanding that all human beings are cross-wired before they modulate their existence within the framework of the reality. As given then,  one must assume such modulation is a frequency for the idea for such matters?



 See: Cymatics and the Heart Song 

Now before I begin here I want t share some understanding of the chaldni plates had one ever come across them,  as to imply that such resonances are activators for the current patterns inherent in the structure that one might see as demonstrated by bow, string and metal plate.

Herein too, I also supply the idea that there is "the agent,"  an affective idea that materialized from one of my journeys,  as to a time where effective polymerization "could have have been used" to set associative responses in the architecture of buildings. These were to correlate in the idea of this "harmonization structure" as seen as in BB's  choice entrainment,  as brain wave matter states.




Cell-Phone Technology

While considering transmission towers, the idea of energy being used to power has it's basis in the use of antenna to help boost the signal.

While this application is separate from the idea and use of electrical transmission,  it is of consequence that such companies in the use of their "fractal antennas" have specific frequencies with which they operate? Customers that are satisfied according to the plans you use.

If there was a consideration of the White Space that was free for our use in the television broadcasting system,  why was it not mandated that the public remain as a top priority in the access to information as a free and viable enhancement to our knowledge base?

 Access to books in the electric medium, as one would walk to the local library? Google,  it was a good plan.

Now in order to get to our local library,  transportation has been divvied up,  even to the ether as a viable means of charging for such transport.  It should have been a given that such pathways are and must remain a viable source of knowledge enhancement for the public and it's rise above the current constrictions that society has been contained too, by rulings of the international body on the internet?

Lubos, this is also for you just so you know where I am coming from. It is really not that scary once you've figured it out. You don't have to be a communist as to figure that what you can do as a scientist for the public is as if taken the oath as a medical doctor to do all you can do for your patient/individual in society. This is but to help bring society into the state of awareness that knowledge could lift any of us out of our ignorance.

See Also:

Wednesday, December 19, 2012

Binaural beats by Wiki

Binaural beats or binaural tones are auditory processing artifacts, or apparent sounds, the perception of which arises in the brain for specific physical stimuli. This effect was discovered in 1839 by Heinrich Wilhelm Dove, and earned greater public awareness in the late 20th century based on claims that binaural beats could help induce relaxation, meditation, creativity and other desirable mental states. The effect on the brainwaves depends on the difference in frequencies of each tone: for example, if 300 Hz was played in one ear and 310 in the other, then the binaural beat would have a frequency of 10 Hz.[1][2]
The brain produces a phenomenon resulting in low-frequency pulsations in the amplitude and sound localization of a perceived sound when two tones at slightly different frequencies are presented separately, one to each of a subject's ears, using stereo headphones. A beating tone will be perceived, as if the two tones mixed naturally, out of the brain. The frequencies of the tones must be below 1,000 hertz for the beating to be noticeable.[3] The difference between the two frequencies must be small (less than or equal to 30 Hz) for the effect to occur; otherwise, the two tones will be heard separately and no beat will be perceived.

Binaural beats are of interest to neurophysiologists investigating the sense of hearing.[4][5][6][7]

Binaural beats reportedly influence the brain in more subtle ways through the entrainment of brainwaves[3][8][9] and have been claimed to reduce anxiety[10] and to provide other health benefits such as control over pain.[11]

Contents

 

 

Acoustical background

 


Interaural time differences (ITD) of binaural beats
For sound localization the human auditory system analyses interaural time differences between both ears inside small frequency ranges, called critical bands. For frequencies below 1000 to 1500 Hz interaural time differences are evaluated from interaural phase differences between both ear signals.[12] The perceived sound is also evaluated from the analysis of both ear signals.

If different pure tones (sinusoidal signals with different frequencies) are presented to each ear, there will be time dependent phase and time differences between both ears (see figure). The perceived sound depends on the frequency difference between both ear signals:

  • If the frequency difference between the ear signals is lower than some hertz, the auditory system can follow the changes in the interaural time differences. As a result an auditory event is perceived, which is moving through the head. The perceived direction corresponds to the instantaneous interaural time difference.
  • For slightly bigger frequency differences between the ear signals (more than 10 Hz) the auditory system can no longer follow the changes in the interaural parameters. A diffuse auditory event appears. The sound corresponds to an overlay of both ear signals, which means amplitude and loudness are changing rapidly (see figure in the chapter above).
  • For frequency differences between the ear signals of above 30 Hz the cocktail party effect begins to work, and the auditory system is able to analyze the presented ear signals in terms of two different sound sources at two different locations, and two distinct signals are perceived.

Binaural beats can also be experienced without headphones, they appear when playing two different pure tones through loudspeakers. The sound perceived is quite similar: with auditory events which move through the room, at low frequency differences, and diffuse sound at slightly bigger frequency differences. At bigger frequency differences apparent localized sound sources appear.[13] However, it is more effective to use headphones than loudspeakers.

History

Heinrich Wilhelm Dove discovered binaural beats in 1839. While research about them continued after that, the subject remained something of a scientific curiosity until 134 years later, with the publishing of Gerald Oster's article "Auditory Beats in the Brain" (Scientific American, 1973). Oster's article identified and assembled the scattered islands of relevant research since Dove, offering fresh insight (and new laboratory findings) to research on binaural beats.

In particular,Oster saw binaural beats as a powerful tool for cognitive and neurological research, addressing questions such as how animals locate sounds in their three-dimensional environment, and also the remarkable ability of animals to pick out and focus on specific sounds in a sea of noise (which is known as the "cocktail party effect").
Oster also considered binaural beats to be a potentially useful medical diagnostic tool, not merely for finding and assessing auditory impairments, but also for more general neurological conditions. (Binaural beats involve different neurological pathways than ordinary auditory processing.) For example, Oster found that a number of his subjects that could not perceive binaural beats, suffered from Parkinson's disease. In one particular case, Oster was able to follow the subject through a week-long treatment of Parkinson's disease; at the outset the patient could not perceive binaural beats; but by the end of the week of treatment, the patient was able to hear them.

In corroborating an earlier study, Oster also reported gender differences in the perception of beats. Specifically, women seemed to experience two separate peaks in their ability to perceive binaural beats—peaks possibly correlating with specific points in the menstrual cycle, onset of menstruation and during the luteal phase. This data led Oster to wonder if binaural beats could be used as a tool for measuring relative levels of estrogen.[3]

The effects of binaural beats on consciousness were first examined by physicist Thomas Warren Campbell and electrical engineer Dennis Mennerich, who under the direction of Robert Monroe sought to reproduce a subjective impression of 4 Hz oscillation that they associated with out-of-body experience.[14] On the strength of their findings, Monroe created the binaural-beat technology self-development industry by forming The Monroe Institute, now a charitable binaural research and education organization.

Unverified claims


There have been a number of claims regarding binaural beats, among them that they may simulate the effect of recreational drugs, help people memorize and learn, stop smoking, help dieting, tackle erectile dysfunction and improve athletic performance.
Scientific research into binaural beats is very limited. No conclusive studies have been released to support the wilder claims listed above. However, one uncontrolled pilot study[15] of 8 individuals indicates that binaural beats may have a relaxing effect. In absence of positive evidence for a specific effect, however, claimed effects may be attributed to the power of suggestion (the placebo effect).
In a blind study (8 participants) of binaural beats' effects on meditation, 7 Hz frequencies were found to enhance meditative focus while 15 Hz frequencies harmed it.[16]

Physiology


The sensation of binaural beats is believed to originate in the superior olivary nucleus, a part of the brain stem. They appear to be related to the brain's ability to locate the sources of sounds in three dimensions and to track moving sounds, which also involves inferior colliculus (IC) neurons.[17] Regarding entrainment, the study of rhythmicity provides insights into the understanding of temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres.[18] A study of aphasic subjects who had a severe stroke versus normal subjects showed that the aphasic subject could not hear the binaural beats whereas the normal subjects could.[19]

Hypothetical effects on brain function

 

Overview


Binaural beats may influence functions of the brain in ways besides those related to hearing. This phenomenon is called frequency following response. The concept is that if one receives a stimulus with a frequency in the range of brain waves, the predominant brain wave frequency is said to be likely to move towards the frequency of the stimulus (a process called entrainment).[20] In addition, binaural beats have been credibly documented to relate to both spatial perception & stereo auditory recognition, and, according to the frequency following response, activation of various sites in the brain.[21][22][23][24][25]
The stimulus does not have to be aural; it can also be visual[26] or a combination of aural and visual[27] (one such example would be Dreamachine).

Perceived human hearing is limited to the range of frequencies from 20 Hz to 20,000 Hz, but the frequencies of human brain waves are below about 40 Hz. To account for this lack of perception, binaural beat frequencies are used. Beat frequencies of 40 Hz have been produced in the brain with binaural sound and measured experimentally.[28]
When the perceived beat frequency corresponds to the delta, theta, alpha, beta, or gamma range of brainwave frequencies, the brainwaves entrain to or move towards the beat frequency.[29] For example, if a 315 Hz sine wave is played into the right ear and a 325 Hz one into the left ear, the brain is entrained towards the beat frequency 10 Hz, in the alpha range. Since alpha range is associated with relaxation, this has a relaxing effect or if in the beta range, more alertness. An experiment with binaural sound stimulation using beat frequencies in the Beta range on some participants and Delta/Theta range in other participants, found better vigilance performance and mood in those on the awake alert state of Beta range stimulation.[30][31]

Binaural beat stimulation has been used fairly extensively to induce a variety of states of consciousness, and there has been some work done in regards to the effects of these stimuli on relaxation, focus, attention, and states of consciousness.[8] Studies have shown that with repeated training to distinguish close frequency sounds that a plastic reorganization of the brain occurs for the trained frequencies[32] and is capable of asymmetric hemispheric balancing.[33]

 

Brain waves

Frequency range Name Usually associated with:
> 40 Hz Gamma waves Higher mental activity, including perception, problem solving, fear, and consciousness
13–39 Hz Beta waves Active, busy or anxious thinking and active concentration, arousal, cognition, and or paranoia
7–13 Hz Alpha waves Relaxation (while awake), pre-sleep and pre-wake drowsiness, REM sleep, Dreams
8–12 Hz Mu waves Sensorimotor rhythm Mu_rhythm, Sensorimotor_rhythm
4–7 Hz Theta waves deep meditation/relaxation, NREM sleep
< 4 Hz Delta waves Deep dreamless sleep, loss of body awareness
(The precise boundaries between ranges vary among definitions, and there is no universally accepted standard.)
The dominant frequency determines your current state. For example, if in someone's brain alpha waves are dominating, they are in the alpha state (this happens when one is relaxed but awake). However, other frequencies will also be present, albeit with smaller amplitudes.
The brain entraining is more effective if the entraining frequency is close to the user's starting dominant frequency. Therefore, it is suggested to start with a frequency near to one's current dominant frequency (likely to be about 20 Hz or less for a waking person), and then slowly decreasing/increasing it towards the desired frequency.
Some people find pure sine waves unpleasant, so a pink noise or another background (e.g. natural sounds such as river noises) can also be mixed with them. In addition to that, as long as the beat is audible, increasing the volume should not necessarily improve the effectiveness, therefore using a low volume is usually suggested. One theory is to reduce the volume so low that the beating should not even be clearly audible, but this does not seem to be the case (see the next paragraph).

Other uses

In addition to lowering the brain frequency to relax the listener, there are other controversial, alleged uses for binaural beats. For example, that by using specific frequencies an individual can stimulate certain glands to produce desired hormones. Beta-endorphin has been modulated in studies using alpha-theta brain wave training,[34] and dopamine with binaural beats.[1] Among other alleged uses, there are reducing learning time and sleeping needs (theta waves are thought to improve learning, since children, who have stronger theta waves, and remain in this state for a longer period of time than adults, usually learn faster than adults;[citation needed] and some people find that half an hour in the theta state can reduce sleeping needs up to four hours;[citation needed] similar to another method of achieving a theta state, e.g. meditation;[citation needed]) some use them for lucid dreaming and even for attempting out-of-body experiences, astral projection, telepathy and psychokinesis. However, the role of alpha-wave activity in lucid dreaming is subject to ongoing research).[35][36][37]

Alpha-theta brainwave training has also been used successfully for the treatment of addictions.[34][38][39]

It has been used for the recovery of repressed memories, but as with other techniques this can lead to false memories.[40]

An uncontrolled pilot study of Delta binaural beat technology over 60 days has shown positive effect on self-reported psychologic measures, especially anxiety. There was significant decrease in trait anxiety, an increase in quality of life, and a decrease in insulin-like growth factor-1 and dopamine[1] and has been successfully shown to decrease mild anxiety.[41] A randomised, controlled study concluded that binaural beat audio could lessen hospital acute pre-operative anxiety.[42]

Another claimed effect for sound induced brain synchronization is enhanced learning ability. It was proposed in the 1970s that induced alpha brain waves enabled students to assimilate more information with greater long term retention.[43] In more recent times has come more understanding of the role of theta brain waves in behavioural learning.[44] The presence of theta patterns in the brain has been associated with increased receptivity for learning and decreased filtering by the left hemisphere.[43][45][46] Based on the association between theta activity (4–7 Hz) and working memory performance, biofeedback training suggests that normal healthy individuals can learn to increase a specific component of their EEG activity, and that such enhanced activity may facilitate a working memory task and to a lesser extent focused attention.[47]

A small media controversy was spawned in 2010 by an Oklahoma Bureau of Narcotics official comparing binaural beats to illegal narcotics, and warning that interest in websites offering binaural beats could lead to drug use.[48]

See also

 

 

References

  1. ^ a b c Wahbeh H, Calabrese C, Zwickey H (2007). "Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects". Journal of alternative and complementary medicine 13 (1): 25–32. doi:10.1089/acm.2006.6196. PMID 17309374.
  2. ^ Wahbeh H, Calabrese C, Zwickey H, Zajdel J (2007). "Binaural Beat Technology in Humans: A Pilot Study to Assess Neuropsychologic, Physiologic, And Electroencephalographic Effects". Journal of alternative and complementary medicine 13 (2): 199–206. doi:10.1089/acm.2006.6201. PMID 17388762.
  3. ^ a b c Oster G (1973). "Auditory beats in the brain". Sci. Am. 229 (4): 94–102. doi:10.1038/scientificamerican1073-94. PMID 4727697.
  4. ^ Fitzpatrick D, et al (2009). "Processing Temporal Modulations in Binaural and Monaural Auditory Stimuli by Neurons in the Inferior Colliculus and Auditory Cortex". JARO 10 (4): 579–593. doi:10.1007/s10162-009-0177-8. PMID 19506952.
  5. ^ Gu X, Wright BA, Green DM (1995). "Failure to hear binaural beats below threshold". The Journal of the Acoustical Society of America 97 (1): 701–703. doi:10.1121/1.412294. PMID 7860843.
  6. ^ Zeng F-G, et al (2005). "Perceptual Consequences of Disrupted Auditory Nerve Activity". Journal of Neurophysiology 93 (6): 3050–3063. doi:10.1152/jn.00985.2004. PMID 15615831.
  7. ^ Jan Schnupp, Israel Nelken and Andrew King (2011). Auditory Neuroscience. MIT Press. ISBN 0-262-11318-X.
  8. ^ a b Hutchison, Michael M. (1986). Megabrain: new tools and techniques for brain growth and mind expansion. New York: W. Morrow. ISBN 0-688-04880-3.
  9. ^ Turmel, Ron. "Resonant Frequencies and the Human Brain". The Resonance Project. Retrieved 10 June 2011.
  10. ^ http://pt.wkhealth.com/pt/re/emmednews/abstract.00000524-200509000-00006.htm[dead link]
  11. ^ Hemispheric-synchronisation during anaesthesia: a double-blind randomised trial using audiotapes for intra-operative nociception control, Jan 2000, Kliempt, Ruta, Ogston, Landeck & Martay
  12. ^ Blauert, J.: Spatial hearing - the psychophysics of human sound localization; MIT Press; Cambridge, Massachusetts (1983), ch. 2.4
  13. ^ Slatky, Harald (1992): Algorithms for direction specific Processing of Sound Signals - the Realization of a binaural Cocktail-Party-Processor-System, Dissertation, Ruhr-University Bochum, ch. 3
  14. ^ "My Big TOE" book 1, Thomas Campbell, p79 ISBN 978-0-9725094-0-4
  15. ^ Wahbeh H, Calabrese C, Zwickey H (2007). "Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects". J Altern Complement Med 13 (1): 25–32. doi:10.1089/acm.2006.6196. PMID 17309374.
  16. ^ Lavallee, Christina F.; Koren, Persinger (7). "A Quantitative Electroencephalographic Study of Meditation and Binaural Beat Entrainment". Journal of Alternative and Complementary Medicine 17 (4): 351–355. doi:10.1089/acm.2009.0691. PMID 21480784. Retrieved 10 March 2012.
  17. ^ Spitzer MW, Semple MN (1998). "Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity". J. Neurophysiol. 80 (6): 3062–76. PMID 9862906.
  18. ^ Thaut MH (2003). "Neural basis of rhythmic timing networks in the human brain". Ann. N. Y. Acad. Sci. 999 (1): 364–73. doi:10.1196/annals.1284.044. PMID 14681157.
  19. ^ Barr DF, Mullin TA, Herbert PS. (1977). "Application of binaural beat phenomenon with aphasic patients". Arch Otolaryngol. 103 (4): 192–194. PMID 849195.
  20. ^ Gerken GM, Moushegian G, Stillman RD, Rupert AL (1975). "Human frequency-following responses to monaural and binaural stimuli". Electroencephalography and clinical neurophysiology 38 (4): 379–86. doi:10.1016/0013-4694(75)90262-X. PMID 46818.
  21. ^ Dobie RA, Norton SJ (1980). "Binaural interaction in human auditory evoked potentials". Electroencephalography and clinical neurophysiology 49 (3-4): 303–13. doi:10.1016/0013-4694(80)90224-2. PMID 6158406.
  22. ^ Moushegian G, Rupert AL, Stillman RD (1978). "Evaluation of frequency-following potentials in man: masking and clinical studies". Electroencephalography and clinical neurophysiology 45 (6): 711–18. doi:10.1016/0013-4694(78)90139-6. PMID 84739.
  23. ^ Smith JC, Marsh JT, Greenberg S, Brown WS (1978). "Human auditory frequency-following responses to a missing fundamental". Science 201 (4356): 639–41. doi:10.1126/science.675250. PMID 675250.
  24. ^ Smith JC, Marsh JT, Brown WS (1975). "Far-field recorded frequency-following responses: evidence for the locus of brainstem sources". Electroencephalography and clinical neurophysiology 39 (5): 465–72. doi:10.1016/0013-4694(75)90047-4. PMID 52439.
  25. ^ Yamada O, Yamane H, Kodera K (1977). "Simultaneous recordings of the brain stem response and the frequency-following response to low-frequency tone". Electroencephalography and clinical neurophysiology 43 (3): 362–70. doi:10.1016/0013-4694(77)90259-0. PMID 70337.
  26. ^ Cvetkovic D, Simpson D, Cosic I (2006). "Influence of sinusoidally modulated visual stimuli at extremely low frequency range on the human EEG activity". Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1: 1311–4. doi:10.1109/IEMBS.2006.259565. PMID 17945633.
  27. ^ "[Abstract The Induced Rhythmic Oscillations of Neural Activity in the Human Brain"]. Retrieved 2007-11-14.
  28. ^ Schwarz DW, Taylor P (2005). "Human auditory steady state responses to binaural and monaural beats". Clinical Neurophysiology 116 (3): 658–68. doi:10.1016/j.clinph.2004.09.014. PMID 15721080.
  29. ^ Rogers LJ, Walter DO (1981). "Methods for finding single generators, with application to auditory driving of the human EEG by complex stimuli". J. Neurosci. Methods 4 (3): 257–65. doi:10.1016/0165-0270(81)90037-6. PMID 7300432.
  30. ^ Lane JD, Kasian SJ, Owens JE, Marsh GR (1998). "Binaural auditory beats affect vigilance performance and mood". Physiol. Behav. 63 (2): 249–52. doi:10.1016/S0031-9384(97)00436-8. PMID 9423966.
  31. ^ Beatty J, Greenberg A, Deibler WP, O'Hanlon JF (1974). "Operant control of occipital theta rhythm affects performance in a radar monitoring task". Science 183 (4127): 871–3. doi:10.1126/science.183.4127.871. PMID 4810845.
  32. ^ Menning H, Roberts LE, Pantev C (2000). "Plastic changes in the auditory cortex induced by intensive frequency discrimination training". Neuroreport 11 (4): 817–22. doi:10.1097/00001756-200003200-00032. PMID 10757526.
  33. ^ Gottselig JM, Brandeis D, Hofer-Tinguely G, Borbély AA, Achermann P (2004). "Human central auditory plasticity associated with tone sequence learning". Learn. Mem. 11 (2): 162–71. doi:10.1101/lm.63304. PMC 379686. PMID 15054131.
  34. ^ a b Peniston EG, Kulkosky PJ (1989). "Alpha-theta brainwave training and beta-endorphin levels in alcoholics". Alcohol. Clin. Exp. Res. 13 (2): 271–9. doi:10.1111/j.1530-0277.1989.tb00325.x. PMID 2524976.
  35. ^ Ogilvie RD, Hunt HT, Tyson PD, Lucescu ML, Jeakins DB (1982). "Lucid dreaming and alpha activity: a preliminary report". Perceptual and motor skills 55 (3 Pt 1): 795–808. PMID 7162915.
  36. ^ Korabel'nikova EA, Golubev VL (2001). "[Dreams and interhemispheric asymmetry]" (in Russian). Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova / Ministerstvo zdravookhraneniia i meditsinskoĭ promyshlennosti Rossiĭskoĭ Federatsii, Vserossiĭskoe obshchestvo nevrologov Vserossiĭskoe obshchestvo psikhiatrov 101 (12): 51–4. PMID 11811128.
  37. ^ Spoormaker VI, van den Bout J (2006). "Lucid dreaming treatment for nightmares: a pilot study". Psychotherapy and psychosomatics 75 (6): 389–94. doi:10.1159/000095446. PMID 17053341.
  38. ^ Saxby E, Peniston EG (1995). "Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depressive symptoms". Journal of clinical psychology 51 (5): 685–93. doi:10.1002/1097-4679(199509)51:5<685::aid-jclp2270510514>3.0.CO;2-K. PMID 8801245.
  39. ^ Watson CG, Herder J, Passini FT (1978). "Alpha biofeedback therapy in alcoholics: an 18-month follow-up". Journal of clinical psychology 34 (3): 765–9. doi:10.1002/1097-4679(197807)34:3<765::aid-jclp2270340339>3.0.CO;2-5. PMID 690224.
  40. ^ Loftus EF, Davis D (2006). "Recovered memories". Annual review of clinical psychology 2 (1): 469–98. doi:10.1146/annurev.clinpsy.2.022305.095315. PMID 17716079.
  41. ^ Le Scouarnec RP, Poirier RM, Owens JE, Gauthier J, Taylor AG, Foresman PA. (2001). "Use of binaural beat tapes for treatment of anxiety: a pilot study of tape preference and outcomes". Altern Ther Health Med. (Clinique Psych in Montreal, Quebec.) 7 (1): 58–63. PMID 11191043.
  42. ^ Padmanabhan R, Hildreth AJ, Laws D (2005). "A prospective, randomised, controlled study examining binaural beat audio and pre-operative anxiety in patients undergoing general anaesthesia for day case surgery". Anaesthesia 60 (9): 874–7. doi:10.1111/j.1365-2044.2005.04287.x. PMID 16115248.
  43. ^ a b Harris, Bill (2002). Thresholds of the Mind. Centerpointe Press. Appendix 1, pp151–178. ISBN 0-9721780-0-7.
  44. ^ Berry SD, Seager MA (2001). "Hippocampal theta oscillations and classical conditioning". Neurobiol Learn Mem 76 (3): 298–313. doi:10.1006/nlme.2001.4025. PMID 11726239.
  45. ^ Seager MA, Johnson LD, Chabot ES, Asaka Y, Berry SD (2002). "Oscillatory brain states and learning: Impact of hippocampal theta-contingent training". Proc. Natl. Acad. Sci. U.S.A. 99 (3): 1616–20. doi:10.1073/pnas.032662099. PMC 122239. PMID 11818559.
  46. ^ Griffin AL, Asaka Y, Darling RD, Berry SD (2004). "Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning". Behav. Neurosci. 118 (2): 403–11. doi:10.1037/0735-7044.118.2.403. PMID 15113267.
  47. ^ Vernon D, Egner T, Cooper N, et al. (2003). "The effect of training distinct neurofeedback protocols on aspects of cognitive performance". International journal of psychophysiology : official journal of the International Organization of Psychophysiology 47 (1): 75–85. doi:10.1016/S0167-8760(02)00091-0. PMID 12543448.
  48. ^ "Report: Teens Using Digital Drugs to Get High". Wired. 14 July 2010. Retrieved 22 November 2012.

 

External links