Showing posts with label Sonoluminence. Show all posts
Showing posts with label Sonoluminence. Show all posts

Thursday, January 30, 2014

Helioseismology and Gravitational Waves

The universe is expected to be permeated by a stochastic background of gravitational radiation of astrophysical and cosmological origin. This background is capable of exciting oscillations in solar-like stars. Here we show that solar-like oscillators can be employed as giant hydrodynamical detectors for such a background in the muHz to mHz frequency range, which has remained essentially unexplored until today. We demonstrate this approach by using high-precision radial velocity data for the Sun to constrain the normalized energy density of the stochastic gravitational-wave background around 0.11 mHz. These results open up the possibility for asteroseismic missions like CoRoT and Kepler to probe fundamental physics. See: An upper bound from helioseismology on the stochastic background of gravitational waves


The heart-shaped vibrations for the star KIC12253350.
The search for distant planets starts with the vibrations of their stars, and in those vibrations lies a kind of music.

See: Listening to the Stars

This page has links to sound files that are "sonification of light curves" of Kepler stars. The light curves contain certain frequencies of brightness variation that are akin to sound waves, but the frequencies are not audible to the human ear. In the sonification process, those inaudible frequencies are analyzed by a mathematical technique called fourier analysis and then scaled to frequencies that the human ear can hear. See: Kepler Star Sounds


Monday, April 23, 2012

Songs of the Stars: the Real Music of the Spheres

With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universe.-Wayne Hu

The Pythagoreans 2500 years ago believed in a celestial "music of the spheres", an idea that reverberated down the millennia in Western music, literature, art and science. Now, through asteroseismology (the study of the internal structure of pulsating stars), we know that there is a real music of the spheres. The stars have sounds in them that we use to see right to their very cores. This multi-media lecture looks at the relationship of music to stellar sounds. You will hear the real sounds of the stars and you will hear musical compositions where every member of the orchestra is a real (astronomical) star! You will also learn about some of the latest discoveries from the Kepler Space Mission that lets us "hear" the stars 100 times better than with telescopes on the ground See:Don Kurtz, University of Central Lancashire-Wednesday, May 2, 2012 at 7:00 pm

 See Also:

Saturday, December 31, 2011

Andrea Rossi's 'E-cat' nuclear reactor

Andrea Rossi's 'E-cat' nuclear reactor: a video FAQ

Now I am a layman with a keen interest in how our society can benefit from research and development.  Can you save me from being fooled? Can you save society from being fooled? 

As a scientist please demonstrate your opinion as to the viability of such generation across the blogosphere and weigh in. I know some of you are well equipped to answer whether such things in inventiveness can be ascertain  regarding the jump to profitability by product development before all the science has been been supportive of such claims as to kilowatt production.

Imagine the cost reduction in products that could not only heat your homes, but as well as reduce your cost as to air conditioners and saving energy for the grid?

One Megawatt Heat Plant for Sale"We gave the exclusive commercial license to Ampenergo, and only they can sell our  plants." - Andrea Rossi (November 14, 2011) [Story


The Physics of Why the E-Cat's Cold Fusion Claims Collapse
By Ethan Siegel

With other companies now trying to capitalize off of this speculative, unverified and highly dubious claim, it's time for the eCat's proponents to provide the provable, testable, reproducible science that can answer these straightforward physics objections. Independent verification is the cornerstone of all scientific investigation and experiment, it's how we weed out all sorts of errors from miscalibration to contamination, and how we protect ourselves from unscrupulous swindles. Given everything that we know, as others also demonstrate (thanks, Steven B. Krivit), it's time to set aside the mirage of Nickel +Hydrogen fusion and get back to work finding real solutions to our energy and environmental problems.

See Also:


Thanks to scientists for following up. It is much appreciated

Further Update to May 2013
Update July12

More On Rossi's E-Cat: Ericsson And Pomp Rebut "Independent" Test

Monday, September 12, 2011

ἁπτικός-Momentum, as a Tactile Experience?

The value of non-Euclidean geometry lies in its ability to liberate us from preconceived ideas in preparation for the time when exploration of physical laws might demand some geometry other than the Euclidean. Bernhard Riemann

See Water in Zero Gravity, by Backreaction
 Is it possible for us to get this "sense of being" without understanding what momentum is? Do we say it just feels right or do we say that something flows according to the way in which we think about time? If you were to say things must be discrete by nature then how would any logic flow from the idea of such particularization?

Can I realistically call such a sphere in space a spherical cow? For a moment consider that such a collapse will be of  acoustical variety type that we can say in the absence of earths constraints we can see how the universe likes to appeal to our nature of particularization by producing particles for which we can examine the substructure of the world we live in, in science?

In the case of discrete measure how is it such a transfer can take place in mind that the experience becomes part and parcel of the greater reality "of moving in abstract spaces?"  Do we say this is reality but one as  such configured and mathematically devised so as to seek correlations in the world that make sense?

 Today, however, we do have the opportunity not only to observe phenomena in four and higher dimensions, but we can also interact with them. The medium for such interaction is computer graphics. Computer graphic devices produce images on two-dimensional screens. Each point on the screen has two real numbers as coordinates, and the computer stores the locations of points and lists of pairs of points which are to be connected by line segments or more complicated curves. In this way a diagram of great complexity can be developed on the screen and saved for later viewing or further manipulationFrom Flatland to Hypergraphics: Interacting with Higher Dimensions

I am trying to formulate a response in regard to the opening question in title. So please be patient with me as things appear in this blog posting.


Title page of the 1st edition of Isaac Newton's Principia defining the laws of motion.

Mōmentum was not merely the motion, which was mōtus, but was the power residing in a moving object, captured by today's mathematical definitions. A mōtus, "movement", was a stage in any sort of change,[1] while velocitas, "swiftness", captured only speed. The concept of momentum in classical mechanics was originated by a number of great thinkers and experimentalists. The first of these was Byzantine philosopher John Philoponus, in his commentary to Aristotle´s Physics. As regards the natural motion of bodies falling through a medium, Aristotle's verdict that the speed is proportional to the weight of the moving bodies and indirectly proportional to the density of the medium is disproved by Philoponus through appeal to the same kind of experiment that Galileo was to carry out centuries later.[2] This idea was refined by the European philosophers Peter Olivi and Jean Buridan. Buridan referred to impetus being proportional to the weight times the speed.[3][4] Moreover, Buridan's theory was different to his predecessor's in that he did not consider impetus to be self dissipating, asserting that a body would be arrested by the forces of air resistance and gravity which might be opposing its impetus.[5]
Of course I am always interested in the history of  what Momentum might mean. How this is built conceptually and historically so as to define this by a method by which we may measure some thing realistically.


The somatosensory system is a diverse sensory system composed of the receptors and processing centres to produce the sensory modalities such as touch, temperature, proprioception (body position), and nociception (pain). The sensory receptors cover the skin and epithelia, skeletal muscles, bones and joints, internal organs, and the cardiovascular system. While touch (also, more formally, tactition; adjectival form: "tactile" or "somatosensory") is considered one of the five traditional senses, the impression of touch is formed from several modalities. In medicine, the colloquial term touch is usually replaced with somatic senses to better reflect the variety of mechanisms involved.
The system reacts to diverse stimuli using different receptors: thermoreceptors, nociceptors, mechanoreceptors and chemoreceptors. Transmission of information from the receptors passes via sensory nerves through tracts in the spinal cord and into the brain. Processing primarily occurs in the primary somatosensory area in the parietal lobe of the cerebral cortex.

At its simplest, the system works when activity in a sensory neuron is triggered by a specific stimulus such as heat; this signal eventually passes to an area in the brain uniquely attributed to that area on the body—this allows the processed stimulus to be felt at the correct location. The point-to-point mapping of the body surfaces in the brain is called a homunculus and is essential in the creation of a body image. This brain-surface ("cortical") map is not immutable, however. Dramatic shifts can occur in response to stroke or injury.

Haptics in virtual reality

Haptics are gaining widespread acceptance as a key part of virtual reality systems, adding the sense of touch to previously visual-only solutions. Most of these solutions use stylus-based haptic rendering, where the user interfaces to the virtual world via a tool or stylus, giving a form of interaction that is computationally realistic on today's hardware. Systems are also being developed to use haptic interfaces for 3D modeling and design that are intended to give artists a virtual experience of real interactive modeling. Researchers from the University of Tokyo have developed 3D holograms that can be "touched" through haptic feedback using "acoustic radiation" to create a pressure sensation on a user's hands. (See Future Section) The researchers, led by Hiroyuki Shinoda, currently have the technology on display at SIGGRAPH 2009 in New Orleans.[15]

Thursday, June 30, 2011


Vibration underpins all matter in the universe. No matter can exist without sound and vibration. To see the periodic motions that lie at the heart of matter is to lift the veils that conceal many mysteries of the universe. The CymaScope represents the first scientific instrument that can give us a visual image of sound and vibration - a cymatic image - helping us to understand our world and universe in ways previously hidden from view.

When the microscope and telescope were invented they opened vistas on realms that were not even suspected to exist.

The sand collected in nodal lines producing symmetrical patterns similar to Hookes flour on the glass plate. It is also important to note that this influenced Faraday in thinking about lines of force in magnetic in his electrical experiments.


Ernst Florens Friedrich Chladni

Born in Wittenburg in Germany, Chladni's Father demanded that he study Law not science. He obtained his law degree in 1782 from Leipzig. After the death of his Farther he vigorously pursued his career in science. Chladni achieved recognition for his pioneering work in the mathematical analysis of acoustics. This research was built on the early experiments of Robert Hooke at Oxford University. On July 8th 1680 Hooke formed the experiment of glass vibrating 6.4.8. places. This was done by putting flour on a glass plate, and bowing on the edge of glass. Hooke had observed that the motion of the glass was vibrate perpendicular to the surface of the glass, and that the circular figure of the flour changed into an oval one way, and the reciprocation of it changed it into an oval the other way. This phenomenon was rediscovered by Chladni in the eighteenth century, and given his name "Chladni figures". What Chladni did was to take thin metal plates and cover them with sand and caused them to vibrate. The sand collected in nodal lines producing symmetrical patterns similar to Hookes flour on the glass plate. It is also important to note that this influenced Faraday in thinking about lines of force in magnetic in his electrical experiments.

Tuesday, February 22, 2011

Atlas Experiment

Link on Title and internal "color reference links" will highlight links to subject locations. Well worth the visit.

 The ATLAS detector consists of four major components
(place your cursor over the links below to identify the location of the components):
  • inner detector (yellow) - measures the momentum of each charged particle
  • calorimeter (orange and green) - measures the energies carried by the particles
  • muon spectrometer (blue) - identifies and measures muons
  • magnet system (grey) - bending charged particles for momentum measurement
The interactions in the ATLAS detectors will create an enormous dataflow. To digest this data we need:

Sunday, January 24, 2010

Sound Shaping our Views of the Universe?

The Sound of Gravitational Waves

We can't actually hear gravitational waves, even with the most sophisticated equipment, because the sounds they make are the wrong frequency for our ears to hear. This is similar in principle to the frequency of dog whistles that canines can hear, but that are too high for humans. The sounds of gravitational waves are probably too low for us to actually hear. However, the signals that scientists hope to measure with LISA and other gravitational wave detectors are best described as "sounds." If we could hear them, here are some of the possible sounds of a gravitational wave generated by the movement of a small body inspiralling into a black hole.

If it's Not a Soccer Ball, What is it?

See, if you do not understand how one can arrive at how one is to bring the truth out of a geometrical propensity of the vibrational nature of the universe then how is it one can hope to view the universe in a new and a very dynamical way? Understand it's mathematics?

Gravitational wave sources for LISA from Michele Vallisneri on Vimeo.

An overview of gravitational-wave sources for the planned NASA-ESA mission LISA (, including visualizations of black-hole binary mergers and extreme-mass-ratio inspirals. Video shown at the 215th American Astronomical Society Meeting (Washington, D.C., Jan 3-7 2010). For a video introduction to the LISA mission

Thursday, October 16, 2008

Fear and Ignorance

This is a very significant physical result because it tells us that the energy of a system described by a harmonic oscillator potential cannot have zero energy. Physical systems such as atoms in a solid lattice or in polyatomic molecules in a gas cannot have zero energy even at absolute zero temperature. The energy of the ground vibrational state is often referred to as "zero point vibration". The zero point energy is sufficient to prevent liquid helium-4 from freezing at atmospheric pressure, no matter how low the temperature.
See:Quantum Harmonic Oscillator: Energy Minimum from Uncertainty Principle

It would be hard here to explain the way I see these things. In the way one can shift perspective, to think, that this measure of any "systemic reason" would ask that one consider the state of equilibrium?

It would be foolish to me for any science process to discount the value on how one can measure storms in space not to think that "such resonances" could have not found suitable actions as being represented in sociological correspondence.

Let us see how these great physicists used harmonic oscillators to establish beachheads to new physics.

Albert Einstein used harmonic oscillators to understand specific heats of solids and found that energy levels are quantized. This formed one of the key bridges between classical and quantum mechanics.

Werner Heisenberg and Erwin Schrödinger formulated quantum mechanics. The role of harmonic oscillators in this process is well known.

Paul A. M. Dirac was quite fond of harmonic oscillators. He used oscillator states to construct Fock space. He was the first one to consider harmonic oscillator wave functions normalizable in the time variable. In 1963, Dirac used coupled harmonic oscillators to construct a representation of the O(3,2) de Sitter group which is the basic scientific language for two-mode squeezed states.

Hediki Yukawa was the first one to consider a Lorentz-invariant differential equation, with momentum-dependent solutions which are Lorentz-covariant but not Lorentz-invariant. He proposed harmonic oscillators for relativistic extended particles five years before Hofstadter observed that protons are not point particles in 1955. Some people say he invented a string-model approach to particle physics.

Richard Feynman was also fond of harmonic oscillators. When he gave a talk at the 1970 Washington meeting of the American Physical Society, he stunned the audience by telling us not to use Feynman diagrams, but harmonic oscillators for quantum bound states. This figure illustrates what he said in 1970.

We are still allowed to use Feynman diagrams for running waves. Feynman diagrams applicable to running waves in Einstein's Lorentz-covariant world. Are Feynman's oscillators Lorentz-covariant? Yes in spirit, but there are many technical problems. Then can those problems be fixed. This is the question. You may be interested in reading about this subject: Lorentz group in Feynman's world.

Can harmonic oscillators serve as a bridge between quantum mechanics and special relativity

To consider such geometrical form "as the sphere," to have encouraged collapse, and find a resulting behaviour as signalling a change overwrought by influences that will insight idealizations to division and the idea that "no" global consideration is present.

While one may debate the idea of the classification of democracies in the 167 countries around the world, a consensus to quality control of information is insinuated. So now moving beyond "the border" to lesser degrees of, while there is no offering of what the idea of democratic institutions in the free countries of the world could be related too. It's measure in the degrees thereof.

While I had offered "in bold" the understanding, they( should I offer by name?) are quick to point out in rebuttal, by an offering to discount the very source of this consideration. I am all for further dialogue, but it looks like that won't happen.

See:Central Theme is the Sun

So how does it look, as a spherical realization, that SOHO measure in terms of predicting an "outcome of weather" could not have found "early warnings" to possible outcomes in the evolution of the planet it's electrical grids and power usage, telecommunications, and the events thereof?

You had to know that Plato "saw further" by understanding the examples of the sun, as a source of "seeing beyond the shadows of the cave." Of knowing, that one could be "free of the chains that bind."

No where does this say it is easy to overcome. The sociological and psychological behaviour that evolves in that "spherical engage", but that it is always the life struggle to get back to the light. One had to be fully aware of the topological translation of the relationship between the inner/outer and the reductionist move to what is self evident. There is no way for one to be aware of the analysis and the final outcome without knowing the way in which one could move to such a result, without knowing the wider perspective that is held about life.

Tuesday, February 20, 2007

The Perfect Sphere

Before I begin I had to mention the following two entries below that I wanted to do but was short on time.

This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.

I am following behind on the different posts that I wanted to write. One of them in relation to the descent of a "measure gatherer" (sounds primitive doesn't it?) and the sound values produced from that "descent on Titan." Can make it "sound ancient" while current research is of value.

Almost, as if one is a cave dweller blowing dried paint over their hands, could possibly be thinking of fire and rays cast while their own shadows made them think of a sun that can enter the cave, and chains that need to be broken from thinking so circumspect..:)

The second one I wanted to talk about was in relation to Themis and the Aurora Borealis. The labels will hopefully help with my previous research that I had done as well as other perspectives that allowed me to see this sun earth relationship. Quasar has currently dealing with that topic further in "Coronal Mass Ejection" as well and Backreaction entitled, "NASA launch of THEMIS Satellite."

Anyway on to the essence of this post and why it is troubling to me. Many would not know what goes on in my head as I am currently looking at the relationship of the Bose Nova to the jet productions that issue from such spiralled tendency. Accretion disc and the idea of such spiralling, to a pipe that follows to making anti-matter productions?

See Water in Zero Gravity, by Backreaction
How did this all arise? So you see such an idea of the sphere in a vacuum is a point from which to begin the search for things that were not there before, so we now know that such collisions can indeed produce "new" information?

The action taken, although seems related to what Arivero is saying, and of course I already have much on this in terms of Han Jenny, and the taking of the Chaldni plate to spherical relations. As an experiment with a "balloons and dyes using sound" similar to "sand on that same chaldni plate."

The Perfect Sphere and Sonoluminence.

Taleyarkhan.A second internal inquiry has found no evidence of misconduct.Credit: Purdue News Service
Purdue University officials today announced that a second and final internal inquiry has cleared bubble-fusion researcher Rusi Taleyarkhan of all allegations of research misconduct. "I feel vindicated and exonerated," Taleyarkhan says. "It's been a pressure cooker for about a year." But controversy surrounding Taleyarkhan's work isn't likely to die down any time soon.

Taleyarkhan is the chief proponent of the controversial notion of sonofusion, which suggests that sound energy can collapse bubbles in a way that yields more energy than was initially put in (ScienceNOW, 4 March 2002). Last year, an article in Nature reported that several of Taleyarkhan's colleagues at Purdue were upset by their encounters with him, suggesting that he allegedly obstructed their work and tried to stop them from publishing results that contradicted his own.

There has been some contention about the results, but this is far from what I wanted to show in terms of the geometrics involved. Patience as to the energy produced from this interaction of "sound on the surface transferred inside" to cause a spherical collapse.

Experimental apparatus used by the team at the University of Stuttgart. PMT = photomultiplier tube, PZT = piezoelectric transducer. Picture credit: Physical Review Letters
German researchers have measured the duration and shape of a sonoluminescence pulse for the first time. Sonoluminescence - the emission of light by bubbles of gas trapped in a liquid and excited by sound waves - is one of the most puzzling phenomena in physics. Although first discovered in 1934, physicists have yet to discover the underlying light emitting process.

Seeing the tensorial action on the bubble moving sound inside, I had wondered about how such a collapse could increase the temperatures involved to produce this "super higgs fluid." Lubos Motl never gave this much thought and I of course am impressionable when it comes to the science mind. I could not shake it.

Ultrasound can produce temperatures as high as those on the surface of the Sun and pressures as great as those at the bottom of the ocean. In some cases, it can also increase chemical reactivities by nearly a millionfold.

So we "assign fluids" as one might the "vacuum in space" to illustrate what we have as our way with these bubbles? These claims have not been fantastical other then what the science had been designed for, yet I am drawn to the schematics and geometrics.

So yes the ways in which the size of the blackhole could all of sudden collapse is critical here, to producing further results in what is required of the new physics? So looking for "such experimental processes" is always part of my resolve to understand the geometrics involved.

Please be patient while I am learning.

Axisymmetry is also broken in the fluid bells, which assume the form of polyhedra

See further information in regards to Broken Symmetry.

So the idea here that was troubling was the way in which the symmetry was broken in terms of the fluid flows demonstrated by the Broken Symmetry examples.

My perception is much different here in that the dynamical relation of "the super fluid", may have it's correlation in the Navier stokes equations. This is by "insinuation on my part." How preposterous such a thing to think that the conditions had to be "spelt out first" in order for us to understand the "new physics" beyond the standard model?

Navier-Stokes Equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, are a set of equations that describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the product of changes in pressure and dissipative viscous forces (similar to friction) acting inside the fluid. These viscous forces originate in molecular interactions and dictate how viscous a fluid is. Thus, the Navier-Stokes equations are a dynamical statement of the balance of forces acting at any given region of the fluid.

Using the geometrical basis of my thought pattern established as a point in a circle, or a point with "no boundary", it seems it is very difficult to talk about the universe if one does not include the way in which such dynamicals can perpetuate the energy within this system.

In fact, in the reciprocal language, these tiny circles are getting ever smaller as time goes by, since as R grows, 1/R shrinks. Now we seem to have really gone off the deep end. How can this possibly be true? How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above?

(Brian Greene, The Elegant Universe, pages 248-249)

Thus too, the understanding, that if you turn Einstein's equation E=mc2 inside/out then what had you done? All "matter states" have then been assigned a energy value? Qui! Non?

Layman scratching head while faceless expression of Boltzmann puzzlement takes hold?

How is one suppose to find "a equilibrium" in such a "low entropic state?"

If we were to experimentally challenging any thinking with "relativistic processes" how could they have ever emerged out of the BB? Maybe, it was a "highly symmetric event" for any asymmetry to show itself as "discrete measures" defined in relation to the "energy of probable outcomes?"

Where did such reductionism begin for us to ask about the "cross over?"

We needed high energy perspective to realize that we were still talking about the universe. Are there any other processes within the cosmos that can be taken down to such rejuvenated qualities to new universes being born that while the arrow of time is pointed one way, that the universe itself allowed such expression to continue in the expansion rate, and the speed up?

A Higg's fluid? Something had to be "happening now" that would dictate?

Forgive me here for my ignorance in face of those better equipped.

So you are looking for "this point" where things cross over? It is highly supersymmetric, yet, we know that such matter states have been detailed and defined as "discrete" asymmetric matter states.

I made a comment above that needed to be looked at again so I am placing it here while it suffers it's fate in another location. The basis of the argument is an ole one indeed that has long been exchanged by Smolin and Susskind.

Now it is again one of those things that I am trying to make sense of while one could go off in a philosophical direction. While the "facts of the matter" and experimental results dictate my thinking here.

It's the fault of that ole' Platonic thinking, and the Pythagorean basis of the universe in expression thingy. The universe is very dynamical geometrically while one debates the essence of inflation and disregards what allows such an expression to bring "other ideas" into the fold. How this "eternal idea" can bring other factors in terms of the speed up into consideration, while one ponders why such a thing is happening?

Neutrino Oscillations? Hmmmm.......

Oscillating flavors The three neutrino mass eigenstates are presumed to be different coherent superpositions of the three flavor eigenstates (ne, nm, and nt) associated with the three charged leptons: the electron, the muon, and the tau. There is good evidence that only two of the three mass eigenstates contribute significantly to ne. In that approximation, one can write

Just another fancy way of looking at CNO and the law of Octaves? :) While some thought space was empty, there were aspects of that space "which was alive" regardless of the asymmetrical realization of the discrete matters?

I'm trying here. You needed a background for it?

The triple alpha process is highly dependent on carbon-12 having a resonance with the same energy as helium-4 and beryllium-8 and before 1952 no such energy level was known. It was astrophysicist Fred Hoyle who used the fact that carbon-12 is so abundant in the universe (and that our existence depends upon it - the Anthropic Principle), as evidence for the existence of the carbon-12 resonance. Fred suggested the idea to nuclear physicist Willy Fowler, who conceded that it was possible that this energy level had been missed in previous work on carbon-12. After a brief undertaking by his research group, they discovered a resonance near to 7.65 Mev.

Now I am not pro or against anything, just trying to make sense of the disparity of such anthropic reasonings. So what processes in Cern reveals such an idea? Muons?

What's that saying? The devil is in the details :)

So we want to define our relationship with the world in some computerized method? It has always been something of a struggle to explain how one may see the world as they lose the focus of distinctive sight and hearing and soon realize that if they are all amalgamated, you might get this idea of the gravitationally inclined atomized in some computerized process? Feelings?:)

You finally learnt something about yourself?

A thought crossed my mind. A fictional story?

It’s interesting what calorimetric measure can do when you are looking at cosmological events. So, the photon becomes descriptive in itself?

Of course speaking of Glast here. Building alliances?

Perhaps Quantum Gravity can be Handled by thoroughly reconsidering Quantum Mechanics itself?

You are working “to set” the course of events? So we have this description then of the universe and it’s “phase transitions.” It’s behind the “value of the photon in it’s description and escape velocity” and it’s value also “gravitationally linked?”

So technology now stops the photon in flight? We can then “colour our views with the gravitationally inclined?”:) A “philosophical take” on new computerized development with feeling?

The leading computer technologies here is not to diverge from what I moved too in terms of understanding the human condition. This is very important to me, and includes not only our biological functioning, but our resulting affect from the physiological one as well.

So while "you think" I hope to chart the colours spectrally induced oscillatory universe from the "photon stop over" and subsequent information held in that abeyance. Sure it's a story of fiction right now, but in time I would like to see this connection to reality.

It may only rest at this time in conceptual framework that was constructed from what was available in the physics and science at our disposal, while I had to move forward slowly.

It was important to understand why there would be such divergences in perspective and how these would be lined up? Some of course did not want to take the time, but it was important to me to understand the "philosophical position" taken.

One could just as well venture to the condense matter theorist and said, what building blocks shall we use? One should not think the "history of Platonism" without some "other influences" to consider. Least you assign it to a "another particular subject" in it's present incarnation? An Oscillatory String Universe?

So the evolution here is much more then the "circumspect of the biological function," but may possible include other things that have not been considered?

Physiologically, the "biological function" had some other relation? So abstract that I assigned the photon? So I said "feelings," while Einstein might assigned them to a "short or long time" considering his state of mind? :)

More thought of course here on the "fictional presentation" submitted previous. As a layman I have a problem in that regard. :)

So no one knows how to combine thermodynamics and general relativity? Hmmm....Boltzmann puzzle..hmmmmm...and I slowly drift off in thought.

Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

How does relativity ever arise out of such a situation? If "tunnelling was to occur" where would it occur, and where would "this equilibrium" find comparative Lagrangian relations in the universe? These perspectives are leading to what we see in the WMAP polarization patterns?

Are there not "comparative features" that allows for the low entropic states, within the existing universe? Allows us to return to those same entropic states in their respective regions, while "feeding" the universe?

You had to look for the conditions that would be similar would you not? And "supporting evidence" to explain the current universe speeding up. These conditions would have to support that contention.

I am holding off producing any new posts until I can bring the discussion to a suitable ending where Lee Smolin admits the ideas are not yet completed in terms of of our understanding of the landscape?

Clifford has a good humour post about real estate in the extra dimensions. Of course you had to follow other discourses here to understand how one may view what is "current in the thinking?"

This "balance in perspective" is not just one or the other but on how such perspective is formed around it. So on the one hand you have this Anthropic approach in string theory, and then you have the "philosophical differences on the other?"

Your trying to explain it and in so doing revealing the train of thought that was established. One does not disavow the road leading to the physics established of course, and no where is this intentional on differing perspectives

Lee Smolin: "Here is a metaphor due to Eric Weinstein that I would have put in the book had I heard it before. Let us take a different twist on the landscape of theories and consider the landscape of possible ideas about post standard model or quantum gravity physics that have been proposed. Height is proportional to the number of things the theory gets right. Since we don’t have a convincing case for the right theory yet, that is a high peak somewhere off in the distance. The existing approaches are hills of various heights that may or may not be connected, across some ridges and high valleys to the real peak. We assume the landscape is covered by fog so we can’t see where the real peak is, we can only feel around and detect slopes and local maxima.

Wednesday, March 08, 2006

A New Search Paradigm?

The collapsing star scenario that is one of the leading contenders as the cause of gamma-ray bursts. Dr. Stan Woosley of the University of California at Santa Cruz proposed the collapsar theory in 1993. This artist's concept of the collapsar model shows the center of a dying star collapsing minutes before the star implodes and emits a gamma-ray burst that is seen across the universe. Credit: NASA/Dana Berry

If one knew the process of such developements, it is equally important that such information would have been "beamed in a way" that some of us might have wondered, why such a sparkle had caught the eye? ON a snowy day at the olympics perhaps? Hey Paul?

Nima and Lubos speak of one Olympics while we had referred to it in another way. Are you not interested to see what years gone by, might have raised, from all those perspectives on the Bose Nova?

Advancement of internet capabilities are very important, that if one linked the picture to a source, the truth of "the source" becomes known. Much as trackbacks, of certain papers are held relevant. While the blogs linked, non creditialed or not because someone said, you are not a "active researcher", hey Peter?. You know why Christine's site is important in regards to "this topic" linked with the paper present?

That you are not included, does not reduce the importance that the paper plays in itself. Linked or not linked, how relevant I might be, had a perspective, or you had a perspective long before the ideas of the new Paradigm existed. It was in the ideas of measure that the universe culd have ever been held in the eye of microscopic processes. That we have realized that the same "collidial events" would enlist particle shower information in beta decay, from that geometrical collapse?

This view had to be part and parcel of the understanding of the way in which gravitational collapse would have released it's information? What geometry revealled by the nature of the collapse before the dyng star "boundry" closed to a very small point of consideration, held in regards to the superfluid created?

Ah, that's new isn't it?

A New Search Paradigm for Correlated Neutrino Emission from Discrete GRBs using Antarctic Cherenkov Telescopes in the Swift EraMichael Stamatikos for the IceCube Collaboration and David L. Band

Abstract. We describe the theoretical modeling and analysis techniques associated with a preliminary search for correlated neutrino emission from GRB980703a, which triggered the Burst and Transient Source Experiment (BATSE GRB trigger 6891), using archived data from the Antarctic Muon and Neutrino Detector Array (AMANDA-B10). Under the assumption of associated hadronic acceleration, the expected observed neutrino energy flux is directly derived, based upon confronting the fireball phenomenology with the discrete set of observed electromagnetic parameters of GRB980703a, gleaned from ground-based and satellite observations, for four models, corrected for oscillations. Models 1 and 2, based upon spectral analysis featuring a prompt photon energy fit to the Band function, utilize an observed spectroscopic redshift, for isotropic and anisotropic emission geometry, respectively. Model 3 is based upon averaged burst parameters, assuming isotropic emission. Model 4, based upon a Band fit, features an estimated redshift from the lag-luminosity relation with isotropic emission. Consistent with our AMANDA-II analysis of GRB030329, which resulted in a flux upper limit of ∼0.150GeV/cm2/s for model 1, we find differences in excess of an order of magnitude in the response of AMANDA-B10, among the variousmodels for GRB980703a. Implications for future searches in the era of Swift and IceCube are discussed

Very interesting picture below, and site linked on Picture.

It reminded me of Andrey Kravstov's computer images, and other information seen from early universe. Without some comprehension on the subject displayed in our universe from a earlier time, what purpose the view held of "a time" when everything was supersymmetrical? That what is held in the distance of microperspecive images of those created in the microstate blackhole creations, would not have enjoined cosmological happenings, by some analog nature, with that microperspective understanding?

Oh, I cry with you Peter, to be considered "Spambot," an IP, as some "register to comment statistic" only to have been thought less of, by some measure of what you might have been thought of? Don't let Jacque control who you are, by such structuralism, that you might not have "some creative realization" in all the work you have done, and knowledge gained.

Thus in that statement it is realized, that the developement of the internet will not stop good people from, venturing and learning what might raise them to better insight. That the progression, although wrong sometimes, might of bore fruit in knowledge gained along the way.

THis will not stop no matter how much structuralism by control of the internet would have been some idealized version of Jacque's view of the internet universe. He competes with the Stallman's view of growth and productivity, as we become students of the nature, of all that is being explained on this internet.


  • Evidence for Extra Dimensions and IceCUBE

  • History of the SuperFluids:New Physics

  • Strangelets in Cosmic Considerations

  • Poincare Conjecture

  • Holographical Mapping onto the Blackhole Horizon

  • Blackhole Production and Sonoluminence
  • Sunday, October 09, 2005

    Bubble World and Geometrodynamics

    As I related in the blog entry comments of "trademarks of the geometers II" it was from that perspective the relation developed on plate 47 and indications of YING Yang interconnectivity to oriental philosophy that I encouraged bubble idealizations.

    I think he(meaning site linked on new views) understood immediately the reference I made to the "Taoist symbol" and the relation to the Calabi Yau, in terms of the rotation being complete. No singularity, but the turning inside out of the state of the current universe to expressions detailed in the culmination of such gravitational collapses. I had to look for examples like this.

    This idea was based on example lead from geometrical insight, I had encouraged from the understanding of that same gravitational collapse. This was derived from correlative attempts to encourage such "geometrical dynamics" revealled in sonoluminence examples, set out in experimental fashion, that physics might have encouraged, and then related back to the maths.

    I never really understood this inclination of myself, but drawing examples in society seemed to be the way of it, so that the understanding could have found examples. It couldn't be that abstract that we could not find some relation, could it?

    It seems I cannot locate my list references to the idea of gravitational collpase so I will have to refill this article with links to help direct the attention I gained from observing this inherent geometrical inclination .

    The glass cell used by Fink and colleagues, surrounded by the eight high-frequency sound generators
    The team believes this method can be modified to make the bubble collapse even faster, which would lead to greater light intensities. This would allow physicists to study the relationship between pressure, light intensity and temperature in sonoluminescence in more detail

    So the point here is not to take sonoluminece as "the process" but of looking deeper into the geoemtrical design that ask blackhole creation, to give indicators as to the depth and contact glast might reveal from a inception point, with viable measures detailled through "calorimetric evidence" and design.

    From a cosmological standpoint, this helped me to see the values of the curvature parameters that exist at the outer most edge of our cosmos. Is it right I am not sure?