Showing posts with label SOHO. Show all posts
Showing posts with label SOHO. Show all posts

Sunday, October 19, 2014

IRIS(Interface Region Imaging Spectrograph) and the Latest

Interface Region Imaging Spectrograph (IRIS) Graphic of proposed IRIS spacecraft. The IRIS instrument is a multi-channel imaging spectrograph with a 20 cm UV telescope. IRIS will obtain spectra along a slit (1/3 arcsec wide), and slit-jaw images. Credit: NASA

The Interface Region Imaging Spectrograph (IRIS) is a NASA solar observation satellite. The mission was funded through the Small Explorer program to investigate the physical conditions of the solar limb, particularly the chromosphere of the Sun. The spacecraft consists of a satellite bus and spectrometer built by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), and a telescope provided by the Smithsonian Astrophysical Observatory. IRIS is operated by LMSAL and NASA's Ames Research Center.
The satellite's instrument is a high-frame-rate ultraviolet imaging spectrometer, providing one image per second at 0.3 arcsecond spatial resolution and sub-ångström spectral resolution.

NASA announced on 19 June 2009 that IRIS was selected from six small explorer mission candidates for further study,[3] along with the Gravity and Extreme Magnetism (GEMS) space observatory.[4]
The spacecraft arrived at Vandenberg Air Force Base, California, on 16 April 2013[5] and was successfully launched on 27 June 2013 by a Pegasus-XL rocket.[6] IRIS achieved first light on 17 July 2013.[7] NASA noted, "IRIS's first images showed a multitude of thin, fibril-like structures that have never been seen before, revealing enormous contrasts in density and temperature occur throughout this region even between neighboring loops that are only a few hundred miles apart."[7] On 31 October 2013, calibrated IRIS data and images were released on the project website.[8] A preprint describing the satellite and initial data has been released on the arXiv.[9]
 ***



NASA's newest sun-watcher, the Interface Region Imaging Spectrograph, launched in 2013 with a specific goal: track how energy and heat coursed through a little understood region of the sun called the interface region. Sandwiched between the solar surface and its outer atmosphere, the corona, the interface region is where the cooler temperatures of the sun's surface transition to the hotter temperatures above. Moreover, all the energy to power the sun's output -- including eruptions such as solar flares and the sun's constant outflow of particles called the solar wind -- must make its way through this region. See:
NASA's IRIS Helps Explain Mysterious Heating of the Solar Atmosphere

Thursday, July 24, 2014

The Sun

24 July 2014 - Mission Day: 6810 - DOY: 205
"Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams."

***




Spun and Confused
Published on Jul 21, 2014
A long arch of plasma (called a prominence) was pulled this way and that by magnetic forces for a week before it finally dissipated (July 10-16, 2014). This close up was captured in extreme ultraviolet light. The Earth scale in the lower left corner gives one a sense of the length of the prominence. This one held itself together for quite a long time, as these things go. Credit: Solar Dynamics Observatory/NASA.

Thursday, July 04, 2013

NASA | First X-Class Solar Flares of 2013




Published on May 13, 2013
On May 12-13 the sun erupted with an X1.7-class and an X2.8-class flare as well as two coronal mass ejections, or CMEs, off the upper left side of the sun. Solar material also danced and blew off the sun in what's called a prominence eruption, both in that spot and on the lower right side of the sun. This movie compiles imagery of this activity from NASA's Solar Dynamics Observatory and from the ESA/NASA Solar Heliospheric Observatory.

Music: "Long Range Cruise" by Lars Leonhard, courtesy of the artist and BineMusic. www.lars-leonhard.de


This video is public domain and can be downloaded at: http://svs.gsfc.nasa.gov/vis/a010000/...

Tuesday, June 25, 2013

Iris-Interface Region Imaging Spectrograph

This graphic shows the IRIS observatory with the solar arrays removed. The orange section to the left is the spacecraft bus which includes the spacecraft support structure, the command and data handling system, power distribution system, reaction wheels, X- and S-Band communications systems, Li-Ion battery, magnetic torque rods, and electronics for the sun sensors. The section to the right of the spacecraft includes the instrument optics package and electronics, several components of the attitude control system, and the solar arrays. The instrument includes a 20cm telescope optimized for solar observations which feeds a 5 channel imaging spectrograph. The green section is the telescope assembly, the light blue section is the spectrograph, and the dark blue box is the separate instrument electronics box. Credit: LMSAL, LM ATC


NASA is getting ready to launch a new mission, a mission to observe a largely unexplored region of the solar atmosphere that powers its dynamic million-degree outer atmosphere and drives the solar wind. In late June 2013, the Interface Region Imaging Spectrograph, or IRIS, will launch from Vandenberg Air Force Base, Calif. IRIS will advance our understanding of the interface region, a region in the lower atmosphere of the sun where most of the sun's ultraviolet emissions are generated. Such emissions impact the near-Earth space environment and Earth's climate. See:IRIS: Studying the Energy Flow that Powers the Solar Atmosphere

This image shows the Heliophysics System Observatory (HSO). The HSO utilizes the entire fleet of solar, heliospheric, geospace, and planetary spacecraft as a distributed observatory to discover the larger scale and/or coupled processes at work throughout the complex system that makes up our space environment. The HSO consist of 18 operating missions: Voyager, Geotail, Wind, SOHO, ACE, Cluster, TIMED, RHESSI, TWINS, Hinode, STEREO, THEMIS, AIM, CINDI, IBEX, SDO, ARTEMIS, Van Allen Probes Credit: NASA

Monday, July 09, 2012

Latest SDO IMage

This image taken by SDO's AIA instrument at 171 Angstrom shows the current conditions of the quiet corona and upper transition region of the Sun.

Active Region 1515 released an M6.9 class flare beginning at 12:23 PM EDT and peaking at 12:32 on July 7, 2012. This region has been the source of much solar activity since July 2.


See: Today's Space Weather

This plot shows 3-days of 5-minute solar x-ray flux values measured on the SWPC primary GOES satellite. One low value may appear prior to eclipse periods. Click on the plot to open an updating secondary window. 6-hour 1-min Solar X-ray Flux plot.

Tuesday, January 24, 2012

SOHO Latest and Space Weather

EIT 304

A large solar flare yesterday triggered a coronal mass ejection travelling at 1400 km/s that will reach Earth today. An energetic eruption of this level can disrupt satellites, so operation teams at ESA and other organisations are closely monitoring the storm.

A coronal mass ejection (CME) is a huge cloud of magnetised plasma from the Sun's atmosphere – the corona – thrown into interplanetary space. They often occur in association with a solar flare. This ejection was detected by the ESA/NASA SOHO and NASA Stereo spaceborne solar observatories. 
See: Solar storm heading toward Earth


Center time of most recent polar pass measurement: 2012 Jan 25 0137 UTn = 2.16

Friday, December 16, 2011

Comet LoveJoy

Comet Lovejoy seen by SOHO
“On average, new Kreutz-group comets are discovered every few days by SOHO, but from the ground they are much rarer to see or discover,” says Karl Battams, Naval Research Laboratory, who curates the Sun-grazing comets webpage. See Also: The beginning of the end for comet Lovejoy
 One instrument watching for the comet was the Solar Dynamics Observatory (SDO), which adjusted its cameras in order to watch the trajectory. Not only does this help with comet research, but it also helps orient instruments on SDO -- since the scientists know where the comet is based on other spacecraft, they can finely determine the position of SDO's mirrors. This first clip from SDO from the evening of Dec 15, 2011 shows Comet Lovejoy moving in toward the sun. 
Comet Lovejoy survived its encounter with the sun. The second clip shows the comet exiting from behind the right side of the sun, after an hour of travel through its closest approach to the sun. By tracking how the comet interacts with the sun's atmosphere, the corona, and how material from the tail moves along the sun's magnetic field lines, solar scientists hope to learn more about the corona. This movie was filmed by the Solar Dynamics Observatory in 171 Angstrom wavelength, which is typically shown in yellow.

Credit: NASA/SDO

The Very Latest SOHO Images

Friday, November 11, 2011

Space Weather: Wind in Space

An X1.9 Flare at 2011 Nov 03 2027 UT!

 

Full SDO cadence (12 sec) movie of the M2.5 flare and associated CME from June 7,2011; composite of AIA wavelengths 211 (red channel), 193 (green), and 171 (blue); 05:00-13:00UTC; 2400 frames (300 frames per hour). Images are rotated 90 degrees for a normal aspect ratio. It took 236 GB of hard drive space, 5 minutes of programming, and about 9 hours of processing on a 2.26GHz quad-core to create this. More to come!

Wednesday, September 14, 2011

Solar Weather

 

The Sun as viewed by the Solar Dynamics Observatory (SDO) in 193 angstrom. The verticle black area near the center is the coronal hole. Credit: NASA/SDO

› View larger UPDATE: 09.09.11 - A strong geomagnetic storm is in progress following the impact of a CME around 7:30 EDT on Sept. 9th. This could be the first of several hits from a series of CMEs expected to reach Earth during the weekend, related to the sunspot 1283 flares during the week. High-latitude sky watchers should be alert for auroras after nightfall.

A high-speed solar wind stream flowing from a large coronal hole should reach Earth on Sept. 11-12 sparking even more aurora.

Friday, April 01, 2011

Solar Dynamics Observatory Pick of the Week

(Click on Image for Larger Veiwing)


Then and Now

A side-by-side comparison of the Sun from precisely two years ago (left, from SOHO) to the present (right, from Solar Dynamics Observatory) dramatically illustrates just how active the Sun has become (Mar. 27-28, 2011). Viewed in two similar wavelengths of extreme ultraviolet light, the Sun now sports numerous active regions that appear as lighter areas that are capable of producing solar storms. Two years ago the Sun was in a very quiet period (solar minimum). The Sun's maximum period of activity is predicted to be around 2013, so we still have quite a ways to go.See: Solar Dynamics Observatory

Monday, October 11, 2010

SOHO EIT 304 Latest Image


The Sun Now-

EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere. About the Very Latest SOHO Images

***

Current Solar Data (from NOAA)

Today's Space Weather

The Satellite Environment Plot combines satellite and ground-based data to provide an overview of the current geosynchronous satellite environment. Click on a data panel to open an updating secondary window. An updating Satellite Environment Plot window is also available.
Although these data are of interest to the satellite community, they do not include all parameters and energy ranges known to be associated with satellite anomalies. See related information from the NOAA POES satellite -- Auroral Activity Estimates, Relative Intensities of Energetic Particles, and Solar Protons.

Friday, April 23, 2010

Solar Dynamics Observatory


SpaceCraft
  • The total mass of SDO at launch was 3000 kg (6620 lb); instruments 300 kg (660 lb), spacecraft 1300 kg (2870 lb), and fuel 1400 kg (3090 lb).
  • Its overall length along the sun-pointing axis is 4.5 m, and each side is 2.22 m.
  • The span of the extended solar panels is 6.25 m.
  • Total available power is 1500 W from 6.6 m2 of solar arrays operating at an efficiency of 16%
  • The high-gain antennas rotate once each orbit to follow the Earth.


***
April 21, 2010: Warning, the images you are about to see could take your breath away.
At a press conference today in Washington DC, researchers unveiled "First Light" images from NASA's Solar Dynamics Observatory, a space telescope designed to study the sun.


"SDO is working beautifully," reports project scientist Dean Pesnell of the Goddard Space Flight Center. "This is even better than we could have dreamed."


Launched on February 11th from Cape Canaveral, the observatory has spent the past two months moving into a geosynchronous orbit and activating its instruments. As soon as SDO's telescope doors opened, the spacecraft began beaming back scenes so beautiful and puzzlingly complex that even seasoned observers were stunned.
Source for story here


***
NASA's New Eye on the Sun Delivers Stunning First Images
04.21.10
View related briefing materials here.

NASA's recently launched Solar Dynamics Observatory, or SDO, is returning early images that confirm an unprecedented new capability for scientists to better understand our sun’s dynamic processes. These solar activities affect everything on Earth.

Some of the images from the spacecraft show never-before-seen detail of material streaming outward and away from sunspots. Others show extreme close-ups of activity on the sun’s surface. The spacecraft also has made the first high-resolution measurements of solar flares in a broad range of extreme ultraviolet wavelengths.

"These initial images show a dynamic sun that I had never seen in more than 40 years of solar research,” said Richard Fisher, director of the Heliophysics Division at NASA Headquarters in Washington. "SDO will change our understanding of the sun and its processes, which affect our lives and society. This mission will have a huge impact on science, similar to the impact of the Hubble Space Telescope on modern astrophysics.”




(From NASA:) A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA
(From NASA:) A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA

Source of Picture is taken from here

Monday, January 25, 2010

Poincaré Hyperbolic Disk

"Poincaré Hyperbolic Disk" from the Wolfram Demonstrations Project

See also:Poincaré Hyperbolic Disk

***

Hyperbolic Geometry


Geometric models of hyperbolic geometry include the Klein-Beltrami model, which consists of an open disk in the Euclidean plane whose open chords correspond to hyperbolic lines. A two-dimensional model is the Poincaré hyperbolic disk.

Weisstein, Eric W. "Hyperbolic Geometry." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HyperbolicGeometry.html
 
***






A computer-generated image showing the pattern of a p-mode solar acoustic oscillation both in the interior and on the surface of the sun. (l=20, m=16 and n=14.) Note that the increase in the speed of sound as waves approach the center of the sun causes a corresponding increase in the acoustic wavelength.

Helioseismology is the study of the propagation of wave oscillations, particularly acoustic pressure waves, in the Sun.

***

SOHO Reads the Solar Flares



Measurements of the Sun's oscillations provide a window into the invisible interior of the Sun allowing scientists to infer the structure and composition as well as the rotation and dynamics of the solar interior.

(Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstroms the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin. 284 Angstrom, to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.


p-Modes

The mysterious source of these oscillations was identified by way of theoretical arguments in 1970 and confirmed by observations in 1975. The oscillations we see on the surface are due to sound waves generated and trapped inside the sun. Sound waves are produced by pressure fluctuations in the turbulent convective motions of the sun's interior. As the waves move outward they reflect off of the sun's surface (the photosphere) where the density and pressure decrease rapidly..


*** 
It's Effect on Earth




The plots on this page show the current extent and position of the auroral oval at each pole, extrapolated from measurements taken during the most recent polar pass of the NOAA POES satellite. "Center time" is the calculated time halfway through the satellite's pass over the pole.

Today's Space Weather

Any threat to communications is always seriously assessed. What we want to see on the other side of the Sun is whether any outburst is coming, that could seriously affect those same communications.

See Also:Backreaction: Reflections on the Sun

Tuesday, May 12, 2009

Thoughts on Angel and Demons Plot



``For me, the most attractive way ... would be to capture the antihydrogen in a neutral particle trap ... The objective would be to then study the properties of a small number of [antihydrogen] atoms confined in the neutral trap for a long time."Gerald Gabrielse, 1986 Erice Lecture (shortly after first trapping of antiprotons)
"Penning Traps, Masses and Antiprotons", in Fundamental Symmetries,
edited by P. Bloch, P. Paulopoulos and R. Klapisch, p. 59 (Plenum, New York, 1987). See:Goals for ATRAP


Perhaps you may see some familiarities with research material that may insight some correlative recognitions of events as they are portrayed in the science fiction scenario portrayed in the plot? So of course you do your homework first, and then you write about it?

The techniques for slowing, cooling and storing cold antiprotons make it possible for ATRAP and its competitors to pursue the production of antihydrogen that is cold enough to trap for precise laser spectroscopy. TRAP got extremely close to cold antihydrogen with our simultaneous confinement of 4.2 K antiprotons and positrons reported in 1999.

All the initial cold antiproton experiments were carried out at the CERN Laboratory with antiprotons coming from its Low Energy Antiproton Ring (LEAR), a unique facility that then closed. Antihydrogen experiments in 2000 and beyond will be pursued at the new Antiproton Decelerator ring of CERN which was constructed for this purpose. Using the techniques developed by TRAP, antiprotons will be accumulated within traps rather than in storage rings, thereby reducing the operating expenses to CERN.


I finished the book Angel and Demons a couple of days ago. I've had the book for sometime, but just hadn't bothered. I needed a little break from the reporting here so thought to immerse myself in some reading, knowing the movie is out there now.

A single solar flare might hold enough antimatter to power humanity's needs for millions of years. Credit: NASA/Goddard Space Flight Center/SOHO Project

As in any crucial "blackhole calamities reported" some of our science advisers are speaking out to ward off "conspiracy theories" with some factual information, seems to be the jest at allaying fears about what energy released could happen in relation to the plot of the book.

High Energy Solar Spectroscopic Imager (RHESSI).



At even higher energies, we find gamma rays produced, not from the flare electrons, but from nuclear interactions of the protons and heavier ions accelerated in the flare. These high energy particles interact with the nuclei of the different elements in the ambient solar atmosphere to produce a far more complicated emission spectrum than the relatively smooth continuum bremsstrahlung spectrum. Many individual gamma-ray lines from a wide variety of different elements in the solar atmosphere have been detected. They result from the decay of such relatively abundant elements as carbon, nitrogen, oxygen, etc. that are excited to high energy states in the various nuclear interactions. The relative intensities of the various lines provide information about the composition of both the accelerated particles and the target nuclei.

Furthermore, the lines are Doppler broadened and shifted because of the high velocities of the nuclei as they decay and emit the gamma rays. Consequently, the widths and detailed shapes of the lines can reveal the distribution of velocities of the emitting particles and hence also impose severe constraints on the acceleration mechanism itself. Despite the wealth of information believed to be available from observations of these gamma-ray lines, no gamma-ray spectrometer with the resolution necessary to reveal anything other than the intensities of the strongest lines has ever been flown.

See:Overview of Solar Flares

***


See Also:
  • Angels and Demons
  • Angels and Demons on a Pinhead
  • Monday, March 02, 2009

    ta kymatika

    ......in Greek means "matters pertaining to waves." Or in Hans Jenny's case Cymatics.

    There were other images which mirrored biological forms and natural processes, as well as flowers, mandalas and intricate geometric designs - all this the result of audible vibration. These experiments seemed to reveal the hidden nature of creation, to lay bare the very principle through which matter coalesced into form.PUBLISHER'S CONFESSION by Jeff Volk, January 2001 Newmarket, New Hampshire, USA


    I hope I will not see some so lost by accepting an "mystic interpretation," as some sign of engaging the decay of the scientific values. As Nature being the Architect, and in recognition of our builders of science, I have always been enthralled by what nature could have supplied. Not only in such designational feature of sound that is telling, but of what SOHO is to supply. How we see the Cosmo in relation to the WMAP. How such a "gravitational spectrum" maps the earth "in assumption" of the rules of relativity. We now see earth much different. Not so round and pretty:)

    There are two reasons that having mapped E8 is so important. The practical one is that E8 has major applications: mathematical analysis of the most recent versions of string theory and supergravity theories all keep revealing structure based on E8. E8 seems to be part of the structure of our universe.

    The other reason is just that the complete mapping of E8 is the largest mathematical structure ever mapped out in full detail by human beings. It takes 60 gigabytes to store the map of E8. If you were to write it out on paper in 6-point print (that's really small print), you'd need a piece of paper bigger than the island of Manhattan. This thing is huge.


    See:Pasquale Del Pezzo and E8 Origination?-Monday, March 19, 2007

    I would like to clarify that such patterns are somewhat "given to people in recognition of states" that are much closer to that "decomposable limit" that is declared by Connes in his articulation of the mathematics.

    Such "decomposable limits" are the recognition of "pure states" becoming condensible. While we may think of the allotrope and their configurations, what is the final product given in the arrangement of the matters specific? Is there some "higher version of geometrics" that we had lost, while we see only the matter at hand.



    IN this mandala above it is by design that human nature sought to construct the basis and foundation of experience so that it could be a record for all time. This is an intentional act to build in experience an foundational perspective. This is one time where we might use such a mind map to be used in this context. People become enthralled too, by the beauty of flower under computerize algorithmic code manipulated image because it is pleasing to the eye, while, there is another time where these "pure states" become the reflection of an intense experiential journey of sorts.

    Sort of like, discovering new math and by definition, a decomposable limit.

    ON the one hand you might say, well, this case its matter defined then, and while I am saying this is in the image of the mind, that too is a coalescing of the pure state, into a image form.

    Such an kaleidescope view of the most intangible seems fitting that it defines a complex recognition state that was not accessible, before, this intense info packet had descended into the mind.

    ***


  • The Geometrics Behind the Supernova and it's History
  • 13th Sphere of the GreenGrocer
  • E8 and the Blackhole
  • Thursday, October 16, 2008

    Fear and Ignorance

    This is a very significant physical result because it tells us that the energy of a system described by a harmonic oscillator potential cannot have zero energy. Physical systems such as atoms in a solid lattice or in polyatomic molecules in a gas cannot have zero energy even at absolute zero temperature. The energy of the ground vibrational state is often referred to as "zero point vibration". The zero point energy is sufficient to prevent liquid helium-4 from freezing at atmospheric pressure, no matter how low the temperature.
    See:Quantum Harmonic Oscillator: Energy Minimum from Uncertainty Principle

    It would be hard here to explain the way I see these things. In the way one can shift perspective, to think, that this measure of any "systemic reason" would ask that one consider the state of equilibrium?

    It would be foolish to me for any science process to discount the value on how one can measure storms in space not to think that "such resonances" could have not found suitable actions as being represented in sociological correspondence.

    Let us see how these great physicists used harmonic oscillators to establish beachheads to new physics.

    Albert Einstein used harmonic oscillators to understand specific heats of solids and found that energy levels are quantized. This formed one of the key bridges between classical and quantum mechanics.

    Werner Heisenberg and Erwin Schrödinger formulated quantum mechanics. The role of harmonic oscillators in this process is well known.

    Paul A. M. Dirac was quite fond of harmonic oscillators. He used oscillator states to construct Fock space. He was the first one to consider harmonic oscillator wave functions normalizable in the time variable. In 1963, Dirac used coupled harmonic oscillators to construct a representation of the O(3,2) de Sitter group which is the basic scientific language for two-mode squeezed states.

    Hediki Yukawa was the first one to consider a Lorentz-invariant differential equation, with momentum-dependent solutions which are Lorentz-covariant but not Lorentz-invariant. He proposed harmonic oscillators for relativistic extended particles five years before Hofstadter observed that protons are not point particles in 1955. Some people say he invented a string-model approach to particle physics.

    Richard Feynman was also fond of harmonic oscillators. When he gave a talk at the 1970 Washington meeting of the American Physical Society, he stunned the audience by telling us not to use Feynman diagrams, but harmonic oscillators for quantum bound states. This figure illustrates what he said in 1970.


    We are still allowed to use Feynman diagrams for running waves. Feynman diagrams applicable to running waves in Einstein's Lorentz-covariant world. Are Feynman's oscillators Lorentz-covariant? Yes in spirit, but there are many technical problems. Then can those problems be fixed. This is the question. You may be interested in reading about this subject: Lorentz group in Feynman's world.

    Can harmonic oscillators serve as a bridge between quantum mechanics and special relativity
    ?


    To consider such geometrical form "as the sphere," to have encouraged collapse, and find a resulting behaviour as signalling a change overwrought by influences that will insight idealizations to division and the idea that "no" global consideration is present.

    While one may debate the idea of the classification of democracies in the 167 countries around the world, a consensus to quality control of information is insinuated. So now moving beyond "the border" to lesser degrees of, while there is no offering of what the idea of democratic institutions in the free countries of the world could be related too. It's measure in the degrees thereof.

    While I had offered "in bold" the understanding, they( should I offer by name?) are quick to point out in rebuttal, by an offering to discount the very source of this consideration. I am all for further dialogue, but it looks like that won't happen.

    See:Central Theme is the Sun

    So how does it look, as a spherical realization, that SOHO measure in terms of predicting an "outcome of weather" could not have found "early warnings" to possible outcomes in the evolution of the planet it's electrical grids and power usage, telecommunications, and the events thereof?

    You had to know that Plato "saw further" by understanding the examples of the sun, as a source of "seeing beyond the shadows of the cave." Of knowing, that one could be "free of the chains that bind."

    No where does this say it is easy to overcome. The sociological and psychological behaviour that evolves in that "spherical engage", but that it is always the life struggle to get back to the light. One had to be fully aware of the topological translation of the relationship between the inner/outer and the reductionist move to what is self evident. There is no way for one to be aware of the analysis and the final outcome without knowing the way in which one could move to such a result, without knowing the wider perspective that is held about life.

    Tuesday, October 14, 2008

    Space Weather

    Unfurling Prominence Eruption (October 10, 2008)
    The STEREO (Ahead) spacecraft observed this visually stunning prominence eruption on Sept. 29, 2008 in the 304 Angstrom wavelength of extreme UV light. It rose up and cascaded to the right over several hours, appearing something like a flag unfurling, as it broke apart and headed into space. The material observed is actually ionized Helium at about 60,000 degrees. Prominences are relatively cool clouds of gas suspended above the Sun and controlled by magnetic forces.
    SOHO Pick of the Week

    It is always interesting to me, that the weather on earth, could have gone beyond the scope of the incidences of natural calamities that happen on earth, could also be affected by events out there in space.

    Thursday, May 22, 2008

    Galactic Neutrino Communications

    Galactic Neutrino Communication by John G. Learned, Sandip Pakvasa, A. Zee

    We examine the possibility to employ neutrinos to communicate within the galaxy. We discuss various issues associated with transmission and reception, and suggest that the resonant neutrino energy near 6.3 PeV may be most appropriate. In one scheme we propose to make Z^o particles in an overtaking e^+ - e^- collider such that the resulting decay neutrinos are near the W^- resonance on electrons in the laboratory. Information is encoded via time structure of the beam. In another scheme we propose to use a 30 PeV pion accelerator to create neutrino or anti-neutrino beams. The latter encodes information via the particle/anti-particle content of the beam, as well as timing. Moreover, the latter beam requires far less power, and can be accomplished with presently foreseeable technology. Such signals from an advanced civilization, should they exist, will be eminently detectable in neutrino detectors now under construction.


    I though I'd better fill in the spots about leaving comments in places, and not showing the significance of what I am pointing to by insinuation alone.

    However, Kapusta also notes that a sufficiently advanced civilization might use pulses of neutrino superfluid for long-distance communications.
    See:Cern Courier:The right spin for a neutrino superfluid



    This of course requires that we look at what Joe Kapusta is actually doing at Cern. A comment that is "slight of hand," that shows what I am pointing too, is at the forefront of what is to come out of Cern at startup, along with the benefits of the Muon detection.

    Well you had to know, left to my own devices, the ability to pick out the information that is setting the course for humanities future, is of course great interest to me. What descending people may see of this blog, or the "tightening of the circle" against the influences from here, is of course a close mindedness that always comes at a cost. The abilities I may harbour in other areas are less of a concern to me, knowing that what I am sharing is always the work at the edges of the periphery of our vision.

    Vernon Barger: perspectives on neutrino physics Posted by dorigo

    Barger then mentioned the idea of mapping the universe with neutrinos: the idea is that active galactic nuclei (AGN) produce hadronic interactions with pions decaying to neutrinos, and there is a whole range of experiments looking at this. You could study the neutrinos coming from AGN and their flavor composition.


    So you look at the universe in "different ways" and never before had you thought to think that the constrains that are applied to self, is the limitation we settle our own points of view too. These are the "resounding factors" that work "like a Higgs" as these things gather around it. Life gathers around that "point of view." You've set the tone. Brain Cox on Ted.com, gives a nice example of Margaret Thatcher moving across the room.

    I do not know how many times I can use the word like "tone" and not have found some relevance to the psychology of the individual, and then, see it's relation out there in terms of the Lagrangian. HelioSeismology's(see sidebar and click on sun, or, other abstract picture) and how it that we can predict such events within the very sun itself and by use of SOHO. This gives us an advantage and a warning system in place in relation to sunspot activity.

    Ruffles in the Field

    So easy then to speak on the significance of the emotive struggle, and then not to find a relation to the space around us. The context of gathering thoughts and things, as they are defined as some graviton gathering in a bulk perspective of space?

    Why I glamour to the cause of those who hurt the attempts to see the world in different ways, and leave people to prognosticate to their own devices and to the call of, "let there be dragons." Gathered around then to the limitations of the thinking mind, set by others. We want people to push these boundaries, not be limited by them.



    This picture is a copy of a "16 century woodcut" copied by Camille Flammarion in 1888.


    The Flammarion woodcut. Flammarion's caption translates to "A medieval missionary tells that he has found the point where heaven and Earth meet..."
    The widely circulated woodcut of a man poking his head through the firmament of a flat Earth to view the mechanics of the spheres, executed in the style of the 16th century cannot be traced to an earlier source than Camille Flammarion's L'Atmosphère: Météorologie Populaire (Paris, 1888, p. 163) [38]. The woodcut illustrates the statement in the text that a medieval missionary claimed that "he reached the horizon where the Earth and the heavens met", an anecdote that may be traced back to Voltaire, but not to any known medieval source. In its original form, the woodcut included a decorative border that places it in the 19th century; in later publications, some claiming that the woodcut did, in fact, date to the 16th century, the border was removed. Flammarion, according to anecdotal evidence, had commissioned the woodcut himself. In any case, no source of the image earlier than Flammarion's book is known.
    See here for larger version "with caption" that has been translated above.

    Pushing back the veil of our boundaries of thought are always of interest to me and the woodcut while speculated upon is my way of expressing this attempt.

    See:

  • The Right Spin for a Neutrino Superfluid
  • Wednesday, September 06, 2006

    Beyond the Dance of the Sun

    When we first start facing truth, the process may be frightening, and many people run back to their old lives. But if you continue to seek truth, you will eventually be able to handle it better. In fact, you want more! It's true that many people around you now may think you are weird or even a danger to society, but you don't care. Once you've tasted the truth, you won't ever want to go back to being ignorant!


    If we concretize thngs and leave no room, then other theories seem like a waste of time compared to our views? Is their no room, to see what perfection the sun has for us in it's rays?


    SOHO is a project of international cooperation between ESA and NASA


    A lot of times it is much easier to accept the cosmological review of the universe in such a grand scale why would we think we need something more then what is already here? What has the subject of helioseismology to do with the way Wayne Hu may look at his universe?

    One of the lessons I learnt as I tried to understand how they tied together the cosmological and quantum world, was to understand that relativity only spoke to that cosmo at large, and that to think anythng more, we would have to bring quantum perspectve in line with it.

    We talked lots about micro perspective and particle creation and understood that the beginning of the universe is tied directly to how we micro perceptively deal with it's origins?

    You may look at the sun and then realize the dynamical nature such quantum perception reveals as this process continues to unfold for us, as long as the energy is there to support it?

    Now that you have shifted your views to the "nature of the dance," I had some choreographies for you to consider.

    A Microperspective of the Cosmological world.

    A giddy craze was sweeping across Europe at the turn of the 17th century. The wealthy and the well-connected were hoarding things—strange things—into obsessive personal collections. Starfish, forked carrots, monkey teeth, alligator skins, phosphorescent minerals, Indian canoes, and unicorn tails were acquired eagerly and indiscriminately. Associations among these objects, if they were made at all, often reflected a collector's personal vision of an underlying natural "order". Critical taxonomy was rarely in evidence.


    I'll just point towards Greg Egans animations in this article.

    What are Holonomy figures

    While you are seeing these dynamics in context of cosmological reviews would you discard images of the quantum world?), how is abstractness(not real?). Holding many others in thoughts about geometrical propensities from a historical course in projective geometries?

    Withn context of a complete revolution, the noting of the solar body and polarity shifts are quite natural, yet, how would you not think of these geometrical dynamcis as how we might look at the "B field" and Cayley shapes?

    Just something to add to your thoughts as you concretize your views about let's say, quasars.



    I like the Latin name of Sun(Sol). Plato's use of "the sun" in the analogy of the Cave?

    And now, I said, let me show in a figure how far our nature is enlightened or unenlightened: --Behold! human beings living in a underground den, which has a mouth open towards the light and reaching all along the den; here they have been from their childhood, and have their legs and necks chained so that they cannot move, and can only see before them, being prevented by the chains from turning round their heads. Above and behind them a fire is blazing at a distance, and between the fire and the prisoners there is a raised way; and you will see, if you look, a low wall built along the way, like the screen which marionette players have in front of them, over which they show the puppets.


    Holding a "ideal or image" in mind "as to perfection," can be a guiding light in terms of what possibly "enlightenment" may do for society? What any one moment might do in our realization of what "truly rings the basic core of our understanding" about what we thought long and hard about.:)

    A "aha" moment perhaps? A "greater depth of seeing" beyond the "shadows on the walls."

    Saturday, January 15, 2005

    SOHO Reads the Solar Flares


    Measurements of the Sun's oscillations provide a window into the invisible interior of the Sun allowing scientists to infer the structure and composition as well as the rotation and dynamics of the solar interior.

    (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstroms the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin. 284 Angstrom, to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.


    p-Modes

    The mysterious source of these oscillations was identified by way of theoretical arguments in 1970 and confirmed by observations in 1975. The oscillations we see on the surface are due to sound waves generated and trapped inside the sun. Sound waves are produced by pressure fluctuations in the turbulent convective motions of the sun's interior. As the waves move outward they reflect off of the sun's surface (the photosphere) where the density and pressure decrease rapidly..