Pages

Showing posts with label Quantum Chlorophyll. Show all posts
Showing posts with label Quantum Chlorophyll. Show all posts

Thursday, April 10, 2014

More on Quantum Biology

If you push perspective into the area of quantum biology you will be very surprised.

 QUANTUM CHLOROPHYLL: Sunlight triggers wave-like motion in green chlorophyll, embedded in a protein structure, ........ that guides its function. GREGORY ENGEL




Early visions of wireless power actually were thought of by Nikola Tesla basically about 100 years ago. The thought that you wouldn't want to transfer electric power wirelessly, no one ever thought of that. They thought, "Who would use it if you didn't?" And so, in fact, he actually set about doing a variety of things. Built the Tesla coil. This tower was built on Long Island back at the beginning of the 1900s. And the idea was, it was supposed to be able to transfer power anywhere on Earth. We'll never know if this stuff worked. Actually, I think the Federal Bureau of Investigation took it down for security purposes, sometime in the early 1900s.See: http://www.ted.com/talks/eric_giler_demos_wireless_electricity.html


I think people have been behind the times a bit here on what may have been a interesting proposal in order to help the recharging system. Think of Photosynthesis and then think of nano-particulates and you will see they are quite advanced in terms of using this proposal in a varied productive means and not just with solar panels. I know of companies using this approach in shingle application.

But the one that I had thought of was one has its applicability toward helping electric cars is my favorite. You want to know? Do not have time and money to do development but I know the process is being explored and probably at this point being worked towards an application. Interested? Any developers here?:)

Nanocrystal solar: The solar cells at top were made on a roll-to-roll printer from an ink consisting of the rod-shaped inorganic semiconducting nanocrystals shown below. The cells were printed on a flexible metal foil and will be topped with a glass plate.
Credit: Solexant

An Idea: Percolating to the Surface




As well you might have understood why I claimed  Aristarchus Crater and Surrounding Region that since thinking beyond the boundaries on the planet it is important that quantum processes are used to develop the energy that is needed to survive on the moon?:)

Wednesday, April 09, 2014

Quantum Music



Quantum: Music at the Frontier of Science - QNC Performance

Published on Oct 19, 2012 The Kitchener-Waterloo Symphony and the Institute for Quantum Computing teamed up on Sept. 29, 2012, to present an innovative musical experiment called "Quantum: Music at the Frontier of Science." The concert served as the the grand finale of the grand opening celebrations of the Mike & Ophelia Lazaridis Quantum-Nano Centre at the University of Waterloo. Through narration, an eclectic musical programme, live narration and "sound experiments," the concert explored the surprisingly parallel paths followed by quantum science and orchestral music over the past century. The concert was created over the period of a year through meetings and brainstorming sessions between KW Symphony Music Director Edwin Outwater and researchers from the Institute for Quantum Computing.

***

See Also:


Monday, January 20, 2014

Quantum Tunnelling

Quantum tunnelling or tunneling (see spelling differences) refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount. This plays an essential role in several physical phenomena, such as the nuclear fusion that occurs in main sequence stars like the Sun.[1] It has important applications to modern devices such as the tunnel diode,[2] quantum computing, and the scanning tunnelling microscope. The effect was predicted in the early 20th century and its acceptance, as a general physical phenomenon, came mid-century.[3]



ABSTRACT Surprisingly robust quantum effects have been observed in warm biological systems. At the same time quantum information technology has moved closer to physical realization. This one day workshop will examine the significance of mesoscopic quantum coherence, tunneling and entanglement in biomolecular membranes, proteins, DNA and cytoskeleton, with particular attention to recently discovered megahertz ballistic conductance in microtubules. Potential utilization of biomolecular quantum information in regulation of cellular activities will be addressed, along with implications for disease and therapy as well as the future development of quantum computation and artificial intelligence.Google Workshop on Quantum Biology, Welcome and Introduction, Presented by Hartmut Neven

See Also:

Saturday, November 30, 2013

Quantum Computing and Evolution?

The unique capability of quantum mechanics to evolve alternative possibilities in parallel is appealing and over the years a number of quantum algorithms have been developed offering great computational benefits. Systems coupled to the environment lose quantum coherence quickly and realization of schemes based on unitarity might be impossible. Recent discovery of room temperature quantum coherence in light harvesting complexes opens up new possibilities to borrow concepts from biology to use quantum effects for computational purposes. While it has been conjectured that light harvesting complexes such as the Fenna-Matthews-Olson (FMO) complex in the green sulfur bacteria performs an efficient quantum search similar to the quantum Grover's algorithm the analogy has yet to be established. See: Evolutionary Design in Biological Quantum Computing



The Bloch sphere is a representation of a qubit, the fundamental building block of quantum computers.


Quantum Light Harvesting Hints at Entirely New Form of Computing






See:




Tuesday, October 15, 2013

Monday, February 18, 2013

History Displays Newton's Optics and Organic Chemistry?



 The Errors & Animadversions of Honest Isaac Newton

by Sheldon Lee Glashow


ABSTRACT:

Isaac Newton was my childhood hero. Along with Albert Einstein, he one of the greatest scientists ever, but Newton was no saint. He used his position to defame his competitors and rarely credited his colleagues.His arguments were sometimes false and contrived, his data were often fudged, and he exaggerated the accuracy of his calculations. Furthermore, his many religious works (mostly unpublished) were nonsensical or mystical, revealing him to be a creationist at heart. My talk offers a sampling of Newton’s many transgressions, social, scientific and religious.

This is an entry in progress but if one has been following one may have asked indeed where did such a history begin to say that in today's world there is this emergence of the trades in combination. Theoretical Physics and Organic Chemistry.

You may be familiar with Isaac Newton from such inventions as calculus and the law of universal gravitation. What you may not know is that he was also an avid "chymist," or alchemist. In fact, Newton actually wrote roughly a million words about alchemy and his experiments with it — as Indiana University science historian William Newman has noted, Newton probably spent more time doing alchemy than he did on any of his other scientific pursuits. See: Incredible videos recreate Isaac Newton’s experiments with alchemy

Analysis of white light by dispersing it with a prism is an example of spectroscopy
 
So while looking at the future it is always interesting to see where such thought predate the thinking that cross pollination with regard to the science could have seen any benefit in looking at Spectroscopy. So you can see where I might have displayed an ancient idea suggested of alchemy as to the psychology as an end result of the complexity of simple formulation of the physics of things we did not see useful before.

It forces my thinking as to the assumptions that will eventually reveal the nature of our thoughts processes and evidences as existing in the idea of consciousnesses explained?

There is no doubt there is some relevance in my thinking that what may be termed spiritual may have some weight attached to how I think we may be held to our experiences. How the weight of our experiences could have affects as to what is perceivable outside the parameters of and circumference of our established lives.  On a classical level, the matter distinctions are apparent and anything beyond that as related too, quantum effects,  is a much more deeper request for new and measurable techniques to the psychology of our being and examination of what consciousness really is?

Saturday, February 16, 2013

The Physics of Organic Chemistry

Download a Power Point Presentation about Hera (3.3 MB)

It is a hasty entry this morning so by all means this information will not be complete. Familiarity with using spectrographic  processes helps to align the thinking needed in the overview of dealing with the processes of organic chemistry. By no means do I have a complete view here,  but if you think possibly in a theoretical way can we  marry Organic Chemistry to what we call Theoretical Organic Chemistry?

You are not just looking at the stars anymore but have realigned your thinking to organic processes here on Earth.



Spectra are complex because each spectrum holds a wide variety of information. For instance, there are many different mechanisms by which an object, like a star, can produce light - or using the technical term for light, electromagnetic radiation. Each of these mechanisms has a characteristic spectrum. Let's look at a spectrum and examine each part of it. Introduction to Spectroscopy





See Also:

The simulation hypothesis and other things I don’t believe

Tuesday, February 12, 2013

Quantum Biology



The frequency of vibration of an object is, among other things, a function of mass: A heavy guitar string vibrates more slowly than a light one and produces a lower tone. These tiny cantilevers vibrate at radio frequencies, in the 1 to 15 megahertz range, and because they are so small to begin with, adding just a tiny bit more mass will make a measurable change in frequency.
For cell detection, the researchers coated their cantilevers with antibodies that bind to E. coli bacteria, then bathed the devices in a solution containing the cells. Some of the cells were bound to the surface, and the additional mass changed the frequency of vibration. In one case just one cell happened to bond to a cantilever, and it was possible to detect the mass of the single cell.
‘Nano’ Becomes ‘Atto’ and Will Soon Be ‘Zepto’ for Cornell - New Technology

As soon as you use the word "quantum" there is a easy assessment for a scientist who deals with reduction-ism to have it sorted out as to what levels of perception are being forced upon  a definition and understanding. A measurable quantity of something? For us lay people, it is never that easy.

 quan-tum (kwntm)
n. pl. quan·ta (-t)
1. A quantity or amount.
2. A specified portion.
3. Something that can be counted or measured.
4. Physics
a. The smallest amount of a physical quantity that can exist independently, especially a discrete quantity of electromagnetic radiation.
b. This amount of energy regarded as a unit.
adj.
Relating to or based upon quantum mechanics.

[Latin, from neuter of quantus, how great; see quantity.]

So suffice is it to say that by demonstrating this scalable reference to the values and options in recognition of the Powers of Ten,  we realize the depth with which we need participation. That through use of manufacture,  as for any of us to say such a thing that which is not observable normally, can we say then exists for us? We have all taken it for granted, even a scientist perhaps to realize how one can divvy up their day as to say at times our perception was much deeper in to the reality then previously confirmed?




Have we gotten so far into our assumptions of the world that we would not further entertain the idea that consciousness emerges from something. Consciousness that is so subtle that we have not really to this date been able to reproduce what consciousness actually looks like. Categorized consciousness at this wanted measurable level of perception that is needed.


Can we say we have always measured around it, and can shows signs of something going on in terms of biological exchange, but have as yet not been able to assess this function as nothing more then some abstract creature of design that we lack for distinct measurable quantities?







Quantum biology refers to applications of quantum mechanics to biological objects and problems. Usually, it is taken to refer to applications of the "non-trivial" quantum features such as superposition, nonlocality, entanglement and tunneling, as opposed to the "trivial" applications such as chemical bonding which apply to biology only indirectly by dictating quantum chemistry.
Austrian born physicist and theoretical biologist Erwin Schrödinger was one of the first scientists to suggest a study of quantum biology in his 1946 book "What is Life?"

Contents

Applications

Many biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve chemical reactions, light absorption, formation of excited electronic states, transfer of excitation energy, and the transfer of electrons and protons (hydrogen ions) in chemical processes such as photosynthesis and cellular respiration.[1] Quantum biology uses computation to model biological interactions in light of quantum mechanical effects.[2]
Some examples of the biological phenomena that have been studied in terms of quantum processes are the absorbance of frequency-specific radiation (i.e., photosynthesis[3] and vision[4]); the conversion of chemical energy into motion;[5] magnetoreception in animals,[6][7] DNA mutation [8] and brownian motors in many cellular processes.[9]
Recent studies have identified quantum coherence and entanglement between the excited states of different pigments in the light-harvesting stage of photosynthesis.[10][11] Although this stage of photosynthesis is highly efficient, it remains unclear exactly how or if these quantum effects are relevant biologically.[12]

Notes

  1. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/
  2. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
  3. ^ Quantum Secrets of Photosynthesis Revealed
  4. ^ Garab, G. (1999). Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers. ISBN 978-0-7923-5547-2.
  5. ^ Levine, Raphael D. (2005). Molecular Reaction Dynamics. Cambridge University Press. pp. 16–18. ISBN 978-0-521-84276-1.
  6. ^ Binhi, Vladimir N. (2002). Magnetobiology: Underlying Physical Problems. Academic Press. pp. 14–16. ISBN 978-0-12-100071-4.
  7. ^ Erik M. Gauger, Elisabeth Rieper, John J. L. Morton, Simon C. Benjamin, Vlatko Vedral: Sustained quantum coherence and entanglement in the avian compass, Physics Review Letters, vol. 106, no. 4, 040503 (2011) (abstract, preprint)
  8. ^ Lowdin, P.O. (1965) Quantum genetics and the aperiodic solid. Some aspects on the Biological problems of heredity, mutations, aging and tumours in view of the quantum theory of the DNA molecule. Advances in Quantum Chemistry. Volume 2. pp213-360. Acedemic Press
  9. ^ Harald Krug; Harald Brune, Gunter Schmid, Ulrich Simon, Viola Vogel, Daniel Wyrwa, Holger Ernst, Armin Grunwald, Werner Grunwald, Heinrich Hofmann (2006). Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. pp. 197–240. ISBN 978-3-540-32819-3.
  10. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta (2010). "Quantum entanglement in photosynthetic light-harvesting complexes". Nature Physics 6 (6): 462–467. arXiv:0905.3787. Bibcode 2010NatPh...6..462S. doi:10.1038/nphys1652.
  11. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC et al. (2007). "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.". Nature 446 (7137): 782–6. Bibcode 2007Natur.446..782E. doi:10.1038/nature05678. PMID 17429397.
  12. ^ Scholes GS (2010). "Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?". Journal of Physical Chemistry Letters 1: 2–8. doi:10.1021/jz900062f.

Further reading

External links





Photos By: Illustration by Megan Gundrum, fifth-year DAAP student




See Also:

Monday, August 23, 2010

Quantum Computing

Towards quantum chemistry on a quantum computer

B. P. Lanyon1,2, J. D. Whitfield4, G. G. Gillett1,2, M. E. Goggin1,5, M. P. Almeida1,2, I. Kassal4, J. D. Biamonte4,6, M. Mohseni4,6, B. J. Powell1,3, M. Barbieri1,2,6, A. Aspuru-Guzik4 & A. G. White1,2

Abstract

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

Tuesday, March 16, 2010

Frogs, Foam and Fuel: UC Researchers Convert Solar Energy to Sugars



Photos By: Illustration by Megan Gundrum, fifth-year DAAP student

For decades, farmers have been trying to find ways to get more energy out of the sun.

In natural photosynthesis, plants take in solar energy and carbon dioxide and then convert it to oxygen and sugars. The oxygen is released to the air and the sugars are dispersed throughout the plant — like that sweet corn we look for in the summer. Unfortunately, the allocation of light energy into products we use is not as efficient as we would like. Now engineering researchers at the University of Cincinnati are doing something about that.
See:Frogs, Foam and Fuel: UC Researchers Convert Solar Energy to Sugars

***

I get very excited when I see ideas like this.


See:When It Comes to Photosynthesis, Plants Perform Quantum Computation
Plants soak up some of the 1017 joules of solar energy that bathe Earth each second, harvesting as much as 95 percent of it from the light they absorb. The transformation of sunlight into carbohydrates takes place in one million billionths of a second, preventing much of that energy from dissipating as heat. But exactly how plants manage this nearly instantaneous trick has remained elusive. Now biophysicists at the University of California, Berkeley, have shown that plants use the basic principle of quantum computing—the exploration of a multiplicity of different answers at the same time—to achieve near-perfect efficiency.

Biophysicist Gregory Engel and his colleagues cooled a green sulfur bacterium—Chlorobium tepidum, one of the oldest photosynthesizers on the planet—to 77 kelvins [–321 degrees Fahrenheit] and then pulsed it with extremely short bursts of laser light. By manipulating these pulses, the researchers could track the flow of energy through the bacterium's photosynthetic system. "We always thought of it as hopping through the system, the same way that you or I might run through a maze of bushes," Engel explains. "But, instead of coming to an intersection and going left or right, it can actually go in both directions at once and explore many different paths most efficiently."

In other words, plants are employing the basic principles of quantum mechanics to transfer energy from chromophore (photosynthetic molecule) to chromophore until it reaches the so-called reaction center where photosynthesis, as it is classically defined, takes place. The particles of energy are behaving like waves. "We see very strong evidence for a wavelike motion of energy through these photosynthetic complexes," Engel says. The results appear in the current issue of Nature.

QUANTUM CHLOROPHYLL: Sunlight triggers wave-like motion in green chlorophyll, embedded in a protein structure, depicted in gray here, that guides its function. GREGORY ENGEL

Employing this process allows the near-perfect efficiency of plants in harvesting energy from sunlight and is likely to be used by all of them, Engel says. It might also be copied usefully by researchers attempting to create artificial photosynthesis, such as that in photovoltaic cells for generating electricity. "This can be a much more efficient energy transfer than a classical hopping one," Engel says. "Exactly how to implement that is a very difficult question."

It also remains unclear exactly how a plant's structure permits this quantum effect to take place. "[The protein structure] of the plant has to be tuned to allow transfer among chromophores but not to allow transfers into [heat]," Engel says. "How that tuning works and how it is controlled, we don't know." Inside every spring leaf is a system capable of performing a speedy and efficient quantum computation, and therein lies the key to much of the energy on Earth.

***

Monday, May 04, 2009

Filling the Universe with Sand

One of the "Silicon Avogadro Spheres" at the National Physical Laboratory (NPL), Teddington, UK. See:Counting Atoms in a Sphere

Stefan writes...
To measure means to count. We measure a length by counting marks on a ruler, and a time span by counting ticks of clock. We compare the quantity we want to measure to multiples of a standardized quantity, the unit of measurement, such as the metre, the inch, or the second......


***


Discrete mathematics, also called finite mathematics or decision mathematics, is the study of mathematical structures that are fundamentally discrete in the sense of not supporting or requiring the notion of continuity. Objects studied in finite mathematics are largely countable sets such as integers, finite graphs, and formal languages.

Discrete mathematics has become popular in recent decades because of its applications to computer science. Concepts and notations from discrete mathematics are useful to study or describe objects or problems in computer algorithms and programming languages. In some mathematics curricula, finite mathematics courses cover discrete mathematical concepts for business, while discrete mathematics courses emphasize concepts for computer science majors.


Reductionism seems to be the ability to measure in powers of ten, and then, we get to a point where everything is all smeared out. So energy at some point becomes the determination of what any particulate could be measured, and yet, we would say that it is like using sand to fill the universe?

I have been intrigued by the idea of a "kitchen measure of a teaspoon of sorts" as well as to what water fills any glass to it's brim. Thinking, that such a substance while pertaining to the measure of something, can have space in between, with which it can fill? Yet, it does not flow over? How much before it does, and we say that this measure is what the spirit of these walking bodies shall qualify too? The soul at 21 grams?

The title of the movie comes from the work of Dr. Duncan MacDougall, who in the early 1900s sought to measure the weight purportedly lost by a human body when the soul departed the body upon death. MacDougall weighed dying patients in an attempt to prove that the soul was material, tangible and thus measurable. These experiments are widely considered to have little, if any scientific merit, and MacDougall's results varied considerably from 21 grams, but for some people this figure has become synonymous with the measure of a soul's mass [1]The Soul=λόγος,θυμος,ἔρως


***


Archimedes met an untimely death while deep in thought, pondering a figure he had drawn in the sand. He did not see the Roman soldier approach, sword in hand. The mosaic portrays this historical event


"Kepler Conjecture is speaking about cannon balls. Tom Hales writes,"Nearly four hundred years ago, Kepler asserted that no packing of congruent spheres can have a density greater than the density of the face-centered cubic packing."


Turning now to Archimedes’ reckoning, he proceeds to fill up the (then) known universe with sand by considering a succession of spheres, each 100 times the diameter of its predecessor in the succession. He uses a fact well known to Greek geometers: the ratio of the volumes of two spheres is the third power of the ratio of their diameters. The Sand Reckoner


The Stomachion

A computer-enhanced image of a 1,000-year-old manuscript reveals the faint traces of a copy of Archimedes' Stomachion treatise. It had been overwritten by monks in the 13th century. (Rochester Institute of Technology, Johns Hopkins University/The Archimedes Palimpsest)


It was chance that led Dr. Netz to his first insight into the nature of the Stomachion. Last August, he says, just as he was about to start transcribing one of the manuscript pages, he got a gift in the mail, a blue cut-glass model of a Stomachion puzzle. It was made by a retired businessman from California who found Dr. Netz on the Internet as a renowned Archimedes scholar. Looking at the model, Dr. Netz realized that a diagram on the page he was transcribing was actually a rearrangement of the pieces of the Stomachion puzzle. Suddenly, he understood what Archimedes was getting at.
See:στομα'χιον

See Also:Archimedes Palmpsest

***


See:
  • Historical Approach of the Sand Reckoner
  • 13th Sphere of the GreenGrocer
  • Loosing Sight of Discrete Geometry
  • Wednesday, March 25, 2009

    The World of Information

    I suppose the body to be nothing but a statue or machine made of earth, which God forms with the explicit intention of making it as much as possible like usDescartes' Views on the Pineal Gland


    (click on image for larger version)

    Computationally, how is it that the world can see information in this way and not think the basis of the economy cannot be thought "subjective" from a developmental robotic point of view?(the design of this information transfer does not currently exist)

    You see, how instantaneously a virus could over take all areas of research to have it do the bidding of those that know well the resource needed to manipulate, is the resource monetarily that is readily available to them. How appealing such imagery to have it planted in the mind and explode with all it's meaning?

    I do not have to tell you what that is.

    Figure 5. The Worm According to Mondino (view from above). In this view of the brain from above, the label “worm” (“vermis”) is applied to the choroid plexus in the lateral and third ventricles, just as in Mondino's Anothomia (Berengario da Carpi 1530, fol. O3r).

    So this is more the idea that the energy of the sun can be transformed in that "energy of leaves" and how is it fluidity passed through out the whole system(the tree) if one did not understand the "cloud of thinking and body of thought" can enforce endocrinology to do the masters bidding?

    Most certainly I do not want anyone to think this is a "Pseudo-Science" that one can apply to an Illuminate, and think this is what such a body of thought here is assigned to in that body of thought that a secret society works with below the radar.

    It is a legitimate question about how wo/men think that the body is a machine, and how it's functions can exist as "apart from the the mind" as it breathes according to it's own plan? A robotic structure, that given the right programing and theory will apply the logic accordingly without the passions and emotions of human beings. A some how highly recognized version of the masses being worked b such simplistic switches which have been supplanted by the neuronal switch the robot had been designed with.

    ***


    See:When It Comes to Photosynthesis, Plants Perform Quantum Computation
    Plants soak up some of the 1017 joules of solar energy that bathe Earth each second, harvesting as much as 95 percent of it from the light they absorb. The transformation of sunlight into carbohydrates takes place in one million billionths of a second, preventing much of that energy from dissipating as heat. But exactly how plants manage this nearly instantaneous trick has remained elusive. Now biophysicists at the University of California, Berkeley, have shown that plants use the basic principle of quantum computing—the exploration of a multiplicity of different answers at the same time—to achieve near-perfect efficiency.

    Biophysicist Gregory Engel and his colleagues cooled a green sulfur bacterium—Chlorobium tepidum, one of the oldest photosynthesizers on the planet—to 77 kelvins [–321 degrees Fahrenheit] and then pulsed it with extremely short bursts of laser light. By manipulating these pulses, the researchers could track the flow of energy through the bacterium's photosynthetic system. "We always thought of it as hopping through the system, the same way that you or I might run through a maze of bushes," Engel explains. "But, instead of coming to an intersection and going left or right, it can actually go in both directions at once and explore many different paths most efficiently."

    In other words, plants are employing the basic principles of quantum mechanics to transfer energy from chromophore (photosynthetic molecule) to chromophore until it reaches the so-called reaction center where photosynthesis, as it is classically defined, takes place. The particles of energy are behaving like waves. "We see very strong evidence for a wavelike motion of energy through these photosynthetic complexes," Engel says. The results appear in the current issue of Nature.

    QUANTUM CHLOROPHYLL: Sunlight triggers wave-like motion in green chlorophyll, embedded in a protein structure, depicted in gray here, that guides its function. GREGORY ENGEL

    Employing this process allows the near-perfect efficiency of plants in harvesting energy from sunlight and is likely to be used by all of them, Engel says. It might also be copied usefully by researchers attempting to create artificial photosynthesis, such as that in photovoltaic cells for generating electricity. "This can be a much more efficient energy transfer than a classical hopping one," Engel says. "Exactly how to implement that is a very difficult question."

    It also remains unclear exactly how a plant's structure permits this quantum effect to take place. "[The protein structure] of the plant has to be tuned to allow transfer among chromophores but not to allow transfers into [heat]," Engel says. "How that tuning works and how it is controlled, we don't know." Inside every spring leaf is a system capable of performing a speedy and efficient quantum computation, and therein lies the key to much of the energy on Earth.


    ***


    So the question is then raised. Who is the Master that sends the messages to the body of thoughts which governs and disseminates information accordingly to a world view? Is it that "one foot soldier" who takes his order unquestionably and supplants his choice for a product in the future according to the description of the government which holds office, and seeks to implement there own plan to deal with the economy in a way that is most suitable to a "consumerism by their design" which shall over see any such plan to implement a corporate world view under a government agenda???

    It is by such understanding that any existing culture orientated world view of world design is nothing more then an attempt to usurp the freedom of empowered thinkers to choose to buy "which product?" "My logic" saids, you will "not survive" if you think otherwise. That might help adjust one's thinking according to the some Darwinian theory of an economic application?:)