Pages

Showing posts with label Octave. Show all posts
Showing posts with label Octave. Show all posts

Wednesday, December 19, 2012

Binaural beats by Wiki

Binaural beats or binaural tones are auditory processing artifacts, or apparent sounds, the perception of which arises in the brain for specific physical stimuli. This effect was discovered in 1839 by Heinrich Wilhelm Dove, and earned greater public awareness in the late 20th century based on claims that binaural beats could help induce relaxation, meditation, creativity and other desirable mental states. The effect on the brainwaves depends on the difference in frequencies of each tone: for example, if 300 Hz was played in one ear and 310 in the other, then the binaural beat would have a frequency of 10 Hz.[1][2]
The brain produces a phenomenon resulting in low-frequency pulsations in the amplitude and sound localization of a perceived sound when two tones at slightly different frequencies are presented separately, one to each of a subject's ears, using stereo headphones. A beating tone will be perceived, as if the two tones mixed naturally, out of the brain. The frequencies of the tones must be below 1,000 hertz for the beating to be noticeable.[3] The difference between the two frequencies must be small (less than or equal to 30 Hz) for the effect to occur; otherwise, the two tones will be heard separately and no beat will be perceived.

Binaural beats are of interest to neurophysiologists investigating the sense of hearing.[4][5][6][7]

Binaural beats reportedly influence the brain in more subtle ways through the entrainment of brainwaves[3][8][9] and have been claimed to reduce anxiety[10] and to provide other health benefits such as control over pain.[11]

Contents

 

 

Acoustical background

 


Interaural time differences (ITD) of binaural beats
For sound localization the human auditory system analyses interaural time differences between both ears inside small frequency ranges, called critical bands. For frequencies below 1000 to 1500 Hz interaural time differences are evaluated from interaural phase differences between both ear signals.[12] The perceived sound is also evaluated from the analysis of both ear signals.

If different pure tones (sinusoidal signals with different frequencies) are presented to each ear, there will be time dependent phase and time differences between both ears (see figure). The perceived sound depends on the frequency difference between both ear signals:

  • If the frequency difference between the ear signals is lower than some hertz, the auditory system can follow the changes in the interaural time differences. As a result an auditory event is perceived, which is moving through the head. The perceived direction corresponds to the instantaneous interaural time difference.
  • For slightly bigger frequency differences between the ear signals (more than 10 Hz) the auditory system can no longer follow the changes in the interaural parameters. A diffuse auditory event appears. The sound corresponds to an overlay of both ear signals, which means amplitude and loudness are changing rapidly (see figure in the chapter above).
  • For frequency differences between the ear signals of above 30 Hz the cocktail party effect begins to work, and the auditory system is able to analyze the presented ear signals in terms of two different sound sources at two different locations, and two distinct signals are perceived.

Binaural beats can also be experienced without headphones, they appear when playing two different pure tones through loudspeakers. The sound perceived is quite similar: with auditory events which move through the room, at low frequency differences, and diffuse sound at slightly bigger frequency differences. At bigger frequency differences apparent localized sound sources appear.[13] However, it is more effective to use headphones than loudspeakers.

History

Heinrich Wilhelm Dove discovered binaural beats in 1839. While research about them continued after that, the subject remained something of a scientific curiosity until 134 years later, with the publishing of Gerald Oster's article "Auditory Beats in the Brain" (Scientific American, 1973). Oster's article identified and assembled the scattered islands of relevant research since Dove, offering fresh insight (and new laboratory findings) to research on binaural beats.

In particular,Oster saw binaural beats as a powerful tool for cognitive and neurological research, addressing questions such as how animals locate sounds in their three-dimensional environment, and also the remarkable ability of animals to pick out and focus on specific sounds in a sea of noise (which is known as the "cocktail party effect").
Oster also considered binaural beats to be a potentially useful medical diagnostic tool, not merely for finding and assessing auditory impairments, but also for more general neurological conditions. (Binaural beats involve different neurological pathways than ordinary auditory processing.) For example, Oster found that a number of his subjects that could not perceive binaural beats, suffered from Parkinson's disease. In one particular case, Oster was able to follow the subject through a week-long treatment of Parkinson's disease; at the outset the patient could not perceive binaural beats; but by the end of the week of treatment, the patient was able to hear them.

In corroborating an earlier study, Oster also reported gender differences in the perception of beats. Specifically, women seemed to experience two separate peaks in their ability to perceive binaural beats—peaks possibly correlating with specific points in the menstrual cycle, onset of menstruation and during the luteal phase. This data led Oster to wonder if binaural beats could be used as a tool for measuring relative levels of estrogen.[3]

The effects of binaural beats on consciousness were first examined by physicist Thomas Warren Campbell and electrical engineer Dennis Mennerich, who under the direction of Robert Monroe sought to reproduce a subjective impression of 4 Hz oscillation that they associated with out-of-body experience.[14] On the strength of their findings, Monroe created the binaural-beat technology self-development industry by forming The Monroe Institute, now a charitable binaural research and education organization.

Unverified claims


There have been a number of claims regarding binaural beats, among them that they may simulate the effect of recreational drugs, help people memorize and learn, stop smoking, help dieting, tackle erectile dysfunction and improve athletic performance.
Scientific research into binaural beats is very limited. No conclusive studies have been released to support the wilder claims listed above. However, one uncontrolled pilot study[15] of 8 individuals indicates that binaural beats may have a relaxing effect. In absence of positive evidence for a specific effect, however, claimed effects may be attributed to the power of suggestion (the placebo effect).
In a blind study (8 participants) of binaural beats' effects on meditation, 7 Hz frequencies were found to enhance meditative focus while 15 Hz frequencies harmed it.[16]

Physiology


The sensation of binaural beats is believed to originate in the superior olivary nucleus, a part of the brain stem. They appear to be related to the brain's ability to locate the sources of sounds in three dimensions and to track moving sounds, which also involves inferior colliculus (IC) neurons.[17] Regarding entrainment, the study of rhythmicity provides insights into the understanding of temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres.[18] A study of aphasic subjects who had a severe stroke versus normal subjects showed that the aphasic subject could not hear the binaural beats whereas the normal subjects could.[19]

Hypothetical effects on brain function

 

Overview


Binaural beats may influence functions of the brain in ways besides those related to hearing. This phenomenon is called frequency following response. The concept is that if one receives a stimulus with a frequency in the range of brain waves, the predominant brain wave frequency is said to be likely to move towards the frequency of the stimulus (a process called entrainment).[20] In addition, binaural beats have been credibly documented to relate to both spatial perception & stereo auditory recognition, and, according to the frequency following response, activation of various sites in the brain.[21][22][23][24][25]
The stimulus does not have to be aural; it can also be visual[26] or a combination of aural and visual[27] (one such example would be Dreamachine).

Perceived human hearing is limited to the range of frequencies from 20 Hz to 20,000 Hz, but the frequencies of human brain waves are below about 40 Hz. To account for this lack of perception, binaural beat frequencies are used. Beat frequencies of 40 Hz have been produced in the brain with binaural sound and measured experimentally.[28]
When the perceived beat frequency corresponds to the delta, theta, alpha, beta, or gamma range of brainwave frequencies, the brainwaves entrain to or move towards the beat frequency.[29] For example, if a 315 Hz sine wave is played into the right ear and a 325 Hz one into the left ear, the brain is entrained towards the beat frequency 10 Hz, in the alpha range. Since alpha range is associated with relaxation, this has a relaxing effect or if in the beta range, more alertness. An experiment with binaural sound stimulation using beat frequencies in the Beta range on some participants and Delta/Theta range in other participants, found better vigilance performance and mood in those on the awake alert state of Beta range stimulation.[30][31]

Binaural beat stimulation has been used fairly extensively to induce a variety of states of consciousness, and there has been some work done in regards to the effects of these stimuli on relaxation, focus, attention, and states of consciousness.[8] Studies have shown that with repeated training to distinguish close frequency sounds that a plastic reorganization of the brain occurs for the trained frequencies[32] and is capable of asymmetric hemispheric balancing.[33]

 

Brain waves

Frequency range Name Usually associated with:
> 40 Hz Gamma waves Higher mental activity, including perception, problem solving, fear, and consciousness
13–39 Hz Beta waves Active, busy or anxious thinking and active concentration, arousal, cognition, and or paranoia
7–13 Hz Alpha waves Relaxation (while awake), pre-sleep and pre-wake drowsiness, REM sleep, Dreams
8–12 Hz Mu waves Sensorimotor rhythm Mu_rhythm, Sensorimotor_rhythm
4–7 Hz Theta waves deep meditation/relaxation, NREM sleep
< 4 Hz Delta waves Deep dreamless sleep, loss of body awareness
(The precise boundaries between ranges vary among definitions, and there is no universally accepted standard.)
The dominant frequency determines your current state. For example, if in someone's brain alpha waves are dominating, they are in the alpha state (this happens when one is relaxed but awake). However, other frequencies will also be present, albeit with smaller amplitudes.
The brain entraining is more effective if the entraining frequency is close to the user's starting dominant frequency. Therefore, it is suggested to start with a frequency near to one's current dominant frequency (likely to be about 20 Hz or less for a waking person), and then slowly decreasing/increasing it towards the desired frequency.
Some people find pure sine waves unpleasant, so a pink noise or another background (e.g. natural sounds such as river noises) can also be mixed with them. In addition to that, as long as the beat is audible, increasing the volume should not necessarily improve the effectiveness, therefore using a low volume is usually suggested. One theory is to reduce the volume so low that the beating should not even be clearly audible, but this does not seem to be the case (see the next paragraph).

Other uses

In addition to lowering the brain frequency to relax the listener, there are other controversial, alleged uses for binaural beats. For example, that by using specific frequencies an individual can stimulate certain glands to produce desired hormones. Beta-endorphin has been modulated in studies using alpha-theta brain wave training,[34] and dopamine with binaural beats.[1] Among other alleged uses, there are reducing learning time and sleeping needs (theta waves are thought to improve learning, since children, who have stronger theta waves, and remain in this state for a longer period of time than adults, usually learn faster than adults;[citation needed] and some people find that half an hour in the theta state can reduce sleeping needs up to four hours;[citation needed] similar to another method of achieving a theta state, e.g. meditation;[citation needed]) some use them for lucid dreaming and even for attempting out-of-body experiences, astral projection, telepathy and psychokinesis. However, the role of alpha-wave activity in lucid dreaming is subject to ongoing research).[35][36][37]

Alpha-theta brainwave training has also been used successfully for the treatment of addictions.[34][38][39]

It has been used for the recovery of repressed memories, but as with other techniques this can lead to false memories.[40]

An uncontrolled pilot study of Delta binaural beat technology over 60 days has shown positive effect on self-reported psychologic measures, especially anxiety. There was significant decrease in trait anxiety, an increase in quality of life, and a decrease in insulin-like growth factor-1 and dopamine[1] and has been successfully shown to decrease mild anxiety.[41] A randomised, controlled study concluded that binaural beat audio could lessen hospital acute pre-operative anxiety.[42]

Another claimed effect for sound induced brain synchronization is enhanced learning ability. It was proposed in the 1970s that induced alpha brain waves enabled students to assimilate more information with greater long term retention.[43] In more recent times has come more understanding of the role of theta brain waves in behavioural learning.[44] The presence of theta patterns in the brain has been associated with increased receptivity for learning and decreased filtering by the left hemisphere.[43][45][46] Based on the association between theta activity (4–7 Hz) and working memory performance, biofeedback training suggests that normal healthy individuals can learn to increase a specific component of their EEG activity, and that such enhanced activity may facilitate a working memory task and to a lesser extent focused attention.[47]

A small media controversy was spawned in 2010 by an Oklahoma Bureau of Narcotics official comparing binaural beats to illegal narcotics, and warning that interest in websites offering binaural beats could lead to drug use.[48]

See also

 

 

References

  1. ^ a b c Wahbeh H, Calabrese C, Zwickey H (2007). "Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects". Journal of alternative and complementary medicine 13 (1): 25–32. doi:10.1089/acm.2006.6196. PMID 17309374.
  2. ^ Wahbeh H, Calabrese C, Zwickey H, Zajdel J (2007). "Binaural Beat Technology in Humans: A Pilot Study to Assess Neuropsychologic, Physiologic, And Electroencephalographic Effects". Journal of alternative and complementary medicine 13 (2): 199–206. doi:10.1089/acm.2006.6201. PMID 17388762.
  3. ^ a b c Oster G (1973). "Auditory beats in the brain". Sci. Am. 229 (4): 94–102. doi:10.1038/scientificamerican1073-94. PMID 4727697.
  4. ^ Fitzpatrick D, et al (2009). "Processing Temporal Modulations in Binaural and Monaural Auditory Stimuli by Neurons in the Inferior Colliculus and Auditory Cortex". JARO 10 (4): 579–593. doi:10.1007/s10162-009-0177-8. PMID 19506952.
  5. ^ Gu X, Wright BA, Green DM (1995). "Failure to hear binaural beats below threshold". The Journal of the Acoustical Society of America 97 (1): 701–703. doi:10.1121/1.412294. PMID 7860843.
  6. ^ Zeng F-G, et al (2005). "Perceptual Consequences of Disrupted Auditory Nerve Activity". Journal of Neurophysiology 93 (6): 3050–3063. doi:10.1152/jn.00985.2004. PMID 15615831.
  7. ^ Jan Schnupp, Israel Nelken and Andrew King (2011). Auditory Neuroscience. MIT Press. ISBN 0-262-11318-X.
  8. ^ a b Hutchison, Michael M. (1986). Megabrain: new tools and techniques for brain growth and mind expansion. New York: W. Morrow. ISBN 0-688-04880-3.
  9. ^ Turmel, Ron. "Resonant Frequencies and the Human Brain". The Resonance Project. Retrieved 10 June 2011.
  10. ^ http://pt.wkhealth.com/pt/re/emmednews/abstract.00000524-200509000-00006.htm[dead link]
  11. ^ Hemispheric-synchronisation during anaesthesia: a double-blind randomised trial using audiotapes for intra-operative nociception control, Jan 2000, Kliempt, Ruta, Ogston, Landeck & Martay
  12. ^ Blauert, J.: Spatial hearing - the psychophysics of human sound localization; MIT Press; Cambridge, Massachusetts (1983), ch. 2.4
  13. ^ Slatky, Harald (1992): Algorithms for direction specific Processing of Sound Signals - the Realization of a binaural Cocktail-Party-Processor-System, Dissertation, Ruhr-University Bochum, ch. 3
  14. ^ "My Big TOE" book 1, Thomas Campbell, p79 ISBN 978-0-9725094-0-4
  15. ^ Wahbeh H, Calabrese C, Zwickey H (2007). "Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects". J Altern Complement Med 13 (1): 25–32. doi:10.1089/acm.2006.6196. PMID 17309374.
  16. ^ Lavallee, Christina F.; Koren, Persinger (7). "A Quantitative Electroencephalographic Study of Meditation and Binaural Beat Entrainment". Journal of Alternative and Complementary Medicine 17 (4): 351–355. doi:10.1089/acm.2009.0691. PMID 21480784. Retrieved 10 March 2012.
  17. ^ Spitzer MW, Semple MN (1998). "Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity". J. Neurophysiol. 80 (6): 3062–76. PMID 9862906.
  18. ^ Thaut MH (2003). "Neural basis of rhythmic timing networks in the human brain". Ann. N. Y. Acad. Sci. 999 (1): 364–73. doi:10.1196/annals.1284.044. PMID 14681157.
  19. ^ Barr DF, Mullin TA, Herbert PS. (1977). "Application of binaural beat phenomenon with aphasic patients". Arch Otolaryngol. 103 (4): 192–194. PMID 849195.
  20. ^ Gerken GM, Moushegian G, Stillman RD, Rupert AL (1975). "Human frequency-following responses to monaural and binaural stimuli". Electroencephalography and clinical neurophysiology 38 (4): 379–86. doi:10.1016/0013-4694(75)90262-X. PMID 46818.
  21. ^ Dobie RA, Norton SJ (1980). "Binaural interaction in human auditory evoked potentials". Electroencephalography and clinical neurophysiology 49 (3-4): 303–13. doi:10.1016/0013-4694(80)90224-2. PMID 6158406.
  22. ^ Moushegian G, Rupert AL, Stillman RD (1978). "Evaluation of frequency-following potentials in man: masking and clinical studies". Electroencephalography and clinical neurophysiology 45 (6): 711–18. doi:10.1016/0013-4694(78)90139-6. PMID 84739.
  23. ^ Smith JC, Marsh JT, Greenberg S, Brown WS (1978). "Human auditory frequency-following responses to a missing fundamental". Science 201 (4356): 639–41. doi:10.1126/science.675250. PMID 675250.
  24. ^ Smith JC, Marsh JT, Brown WS (1975). "Far-field recorded frequency-following responses: evidence for the locus of brainstem sources". Electroencephalography and clinical neurophysiology 39 (5): 465–72. doi:10.1016/0013-4694(75)90047-4. PMID 52439.
  25. ^ Yamada O, Yamane H, Kodera K (1977). "Simultaneous recordings of the brain stem response and the frequency-following response to low-frequency tone". Electroencephalography and clinical neurophysiology 43 (3): 362–70. doi:10.1016/0013-4694(77)90259-0. PMID 70337.
  26. ^ Cvetkovic D, Simpson D, Cosic I (2006). "Influence of sinusoidally modulated visual stimuli at extremely low frequency range on the human EEG activity". Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1: 1311–4. doi:10.1109/IEMBS.2006.259565. PMID 17945633.
  27. ^ "[Abstract The Induced Rhythmic Oscillations of Neural Activity in the Human Brain"]. Retrieved 2007-11-14.
  28. ^ Schwarz DW, Taylor P (2005). "Human auditory steady state responses to binaural and monaural beats". Clinical Neurophysiology 116 (3): 658–68. doi:10.1016/j.clinph.2004.09.014. PMID 15721080.
  29. ^ Rogers LJ, Walter DO (1981). "Methods for finding single generators, with application to auditory driving of the human EEG by complex stimuli". J. Neurosci. Methods 4 (3): 257–65. doi:10.1016/0165-0270(81)90037-6. PMID 7300432.
  30. ^ Lane JD, Kasian SJ, Owens JE, Marsh GR (1998). "Binaural auditory beats affect vigilance performance and mood". Physiol. Behav. 63 (2): 249–52. doi:10.1016/S0031-9384(97)00436-8. PMID 9423966.
  31. ^ Beatty J, Greenberg A, Deibler WP, O'Hanlon JF (1974). "Operant control of occipital theta rhythm affects performance in a radar monitoring task". Science 183 (4127): 871–3. doi:10.1126/science.183.4127.871. PMID 4810845.
  32. ^ Menning H, Roberts LE, Pantev C (2000). "Plastic changes in the auditory cortex induced by intensive frequency discrimination training". Neuroreport 11 (4): 817–22. doi:10.1097/00001756-200003200-00032. PMID 10757526.
  33. ^ Gottselig JM, Brandeis D, Hofer-Tinguely G, Borbély AA, Achermann P (2004). "Human central auditory plasticity associated with tone sequence learning". Learn. Mem. 11 (2): 162–71. doi:10.1101/lm.63304. PMC 379686. PMID 15054131.
  34. ^ a b Peniston EG, Kulkosky PJ (1989). "Alpha-theta brainwave training and beta-endorphin levels in alcoholics". Alcohol. Clin. Exp. Res. 13 (2): 271–9. doi:10.1111/j.1530-0277.1989.tb00325.x. PMID 2524976.
  35. ^ Ogilvie RD, Hunt HT, Tyson PD, Lucescu ML, Jeakins DB (1982). "Lucid dreaming and alpha activity: a preliminary report". Perceptual and motor skills 55 (3 Pt 1): 795–808. PMID 7162915.
  36. ^ Korabel'nikova EA, Golubev VL (2001). "[Dreams and interhemispheric asymmetry]" (in Russian). Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova / Ministerstvo zdravookhraneniia i meditsinskoĭ promyshlennosti Rossiĭskoĭ Federatsii, Vserossiĭskoe obshchestvo nevrologov Vserossiĭskoe obshchestvo psikhiatrov 101 (12): 51–4. PMID 11811128.
  37. ^ Spoormaker VI, van den Bout J (2006). "Lucid dreaming treatment for nightmares: a pilot study". Psychotherapy and psychosomatics 75 (6): 389–94. doi:10.1159/000095446. PMID 17053341.
  38. ^ Saxby E, Peniston EG (1995). "Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depressive symptoms". Journal of clinical psychology 51 (5): 685–93. doi:10.1002/1097-4679(199509)51:5<685::aid-jclp2270510514>3.0.CO;2-K. PMID 8801245.
  39. ^ Watson CG, Herder J, Passini FT (1978). "Alpha biofeedback therapy in alcoholics: an 18-month follow-up". Journal of clinical psychology 34 (3): 765–9. doi:10.1002/1097-4679(197807)34:3<765::aid-jclp2270340339>3.0.CO;2-5. PMID 690224.
  40. ^ Loftus EF, Davis D (2006). "Recovered memories". Annual review of clinical psychology 2 (1): 469–98. doi:10.1146/annurev.clinpsy.2.022305.095315. PMID 17716079.
  41. ^ Le Scouarnec RP, Poirier RM, Owens JE, Gauthier J, Taylor AG, Foresman PA. (2001). "Use of binaural beat tapes for treatment of anxiety: a pilot study of tape preference and outcomes". Altern Ther Health Med. (Clinique Psych in Montreal, Quebec.) 7 (1): 58–63. PMID 11191043.
  42. ^ Padmanabhan R, Hildreth AJ, Laws D (2005). "A prospective, randomised, controlled study examining binaural beat audio and pre-operative anxiety in patients undergoing general anaesthesia for day case surgery". Anaesthesia 60 (9): 874–7. doi:10.1111/j.1365-2044.2005.04287.x. PMID 16115248.
  43. ^ a b Harris, Bill (2002). Thresholds of the Mind. Centerpointe Press. Appendix 1, pp151–178. ISBN 0-9721780-0-7.
  44. ^ Berry SD, Seager MA (2001). "Hippocampal theta oscillations and classical conditioning". Neurobiol Learn Mem 76 (3): 298–313. doi:10.1006/nlme.2001.4025. PMID 11726239.
  45. ^ Seager MA, Johnson LD, Chabot ES, Asaka Y, Berry SD (2002). "Oscillatory brain states and learning: Impact of hippocampal theta-contingent training". Proc. Natl. Acad. Sci. U.S.A. 99 (3): 1616–20. doi:10.1073/pnas.032662099. PMC 122239. PMID 11818559.
  46. ^ Griffin AL, Asaka Y, Darling RD, Berry SD (2004). "Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning". Behav. Neurosci. 118 (2): 403–11. doi:10.1037/0735-7044.118.2.403. PMID 15113267.
  47. ^ Vernon D, Egner T, Cooper N, et al. (2003). "The effect of training distinct neurofeedback protocols on aspects of cognitive performance". International journal of psychophysiology : official journal of the International Organization of Psychophysiology 47 (1): 75–85. doi:10.1016/S0167-8760(02)00091-0. PMID 12543448.
  48. ^ "Report: Teens Using Digital Drugs to Get High". Wired. 14 July 2010. Retrieved 22 November 2012.

 

External links

Tuesday, February 23, 2010

Calorimetric Equivalence Principle Test

With Stefan shutting down the blog temporary I thought to gather my thoughts here.

Gravitomagnetism

This approximate reformulation of gravitation as described by general relativity makes a "fictitious force" appear in a frame of reference different from a moving, gravitating body. By analogy with electromagnetism, this fictitious force is called the gravitomagnetic force, since it arises in the same way that a moving electric charge creates a magnetic field, the analogous "fictitious force" in special relativity. The main consequence of the gravitomagnetic force, or acceleration, is that a free-falling object near a massive rotating object will itself rotate. This prediction, often loosely referred to as a gravitomagnetic effect, is among the last basic predictions of general relativity yet to be directly tested.
Indirect validations of gravitomagnetic effects have been derived from analyses of relativistic jets. Roger Penrose had proposed a frame dragging mechanism for extracting energy and momentum from rotating black holes.[2] Reva Kay Williams, University of Florida, developed a rigorous proof that validated Penrose's mechanism.[3] Her model showed how the Lense-Thirring effect could account for the observed high energies and luminosities of quasars and active galactic nuclei; the collimated jets about their polar axis; and the asymmetrical jets (relative to the orbital plane).[4] All of those observed properties could be explained in terms of gravitomagnetic effects.[5] Williams’ application of Penrose's mechanism can be applied to black holes of any size.[6] Relativistic jets can serve as the largest and brightest form of validations for gravitomagnetism.
A group at Stanford University is currently analyzing data from the first direct test of GEM, the Gravity Probe B satellite experiment, to see if they are consistent with gravitomagnetism.


A group at Stanford University is currently analyzing data from the first direct test of GEM, the Gravity Probe B satellite experiment, to see if they are consistent with gravitomagnetism.

While I am not as progressed in terms of the organization of your thought process(inexperience in terms of the education) I am holding the ideas of Mendeleev in mind as I look at this topic you've gathered. And Newton as well, but not in the way one might have deferred to as the basis if gravity research.

It is more on the idea of what we can create in reality given all the elements at our disposal. This is also the same idea in mathematics that all the information is there and only has t be discovered. Such a hierarchy in thinking is also the idea of geometrical presence stretched to higher dimensions, as one would point to mater assmptins as t a higher order preset in the development of the material of earth as to the planet.

***

Uncle Al,

Overview:A parity calorimetry test offers a 33,000-fold improvement in EP anomaly sensitivity in only two days of measurements.

we are not so different....that this quest may not be apparent for many, yet it is a simple question about what is contracted to help understand "principals of formation" had been theoretically developed in terms of the genus figures(Stanley Mandelstam) that we understand that this progression mathematically has been slow.

So we scientifically build this experimental progression.

But indeed, it's a method in terms of moving from "the false vacuum to the true?" What is the momentum called toward materialization?

Such an emergent feature while discussing some building block model gives some indication of a "higher order principal" that is not clearly understood, while from a condense matter theorist point of view, this is a emergent feature?

Best,

Bordeaux, France is 44.83 N

http://www.mazepath.com/uncleal/lajos.htm#b7
***

According to general relativity, the gravitational field produced by a rotating object (or any rotating mass-energy) can, in a particular limiting case, be described by equations that have the same form as the magnetic field in classical electromagnetism. Starting from the basic equation of general relativity, the Einstein field equation, and assuming a weak gravitational field or reasonably flat spacetime, the gravitational analogs to Maxwell's equations for electromagnetism, called the "GEM equations", can be derived. GEM equations compared to Maxwell's equations in SI are:[7] [8][9][10]

GEM equations Maxwell's equations
 \nabla \cdot \mathbf{E}_\text{g} = -4 \pi G \rho \  \nabla \cdot \mathbf{E} =  \frac{\rho_\text{em}}{\epsilon_0} \
 \nabla \cdot \mathbf{B}_\text{g} = 0 \  \nabla \cdot \mathbf{B} = 0 \
 \nabla \times \mathbf{E}_\text{g} = -\frac{\partial \mathbf{B}_\text{g} } {\partial t} \  \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B} } {\partial t} \
 \nabla \times \mathbf{B}_\text{g} = -\frac{4 \pi G}{c^2} \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}_\text{g}} {\partial t}  \nabla \times \mathbf{B} = \frac{1}{\epsilon_0 c^2} \mathbf{J}_\text{em} + \frac{1}{c^2} \frac{\partial \mathbf{E}} {\partial t}

where:

Wednesday, April 11, 2007

Physical geodesy: A Condensative Result

The cave was discovered in 2000The 120m-deep Cueva de las Espadas (Cave of Swords), discovered in 1912, is named for its metre-long shafts of gypsum (a calcium sulphate mineral that incorporates water molecules into its chemical formula).

And although individually there are fewer crystals in the 290m-deep Cueva de los Cristales, its beams are considerably bigger.

Professor Garcia-Ruiz and colleagues believe they can now show how these differences emerged.


Clifford of Asymptotia wrote a post talking about Mexican Super lattices.

Plato Apr 7th, 2007 at 7:30 am

I tried to look for some comparative feature on a small scale that might be associated to the cave construction and immediately thought of the geoids and “the condition” that would have formed, while “the environment was trapped” in the earth, while cooling.



Finding these kinds of stones and cutting them in half reveals some amazing crystalline structures. This used to be part of our “family outing” going through gravel pits looking for agates, and other stones. We would use the “sunlight for discovery” to capture them.

Refractive indexes?

I’ll have to show picture on my blog of the collection in the future, as well as other crystals that I had acquired.

This does provide a further thoughts on Physical geodesy?


Well I wanted to expand on this a bit here.

Gems' color form from light - such as a ruby collects all the colors of the white light-(red, blue, green, etc) and reflects red back to the sun.

Color is the most obvious and attractive feature of gemstones. The color of any material is due to the nature of light itself. Sunlight, often called white light, is actually a mixture of different colors of light. When light passes through a material, some of the light may be absorbed, while the rest passes through. The part that isn't absorbed reaches our eyes as white light minus the absorbed colors. A ruby appears red because it absorbs all the other colors of white light - blue, yellow, green, etc. - and reflects the red light to the viewer. A colorless stone absorbs none of the light, and so it allows the white light to emerge unchanged.


A calcite crystal laid upon a paper with some letters showing birefringence


If you wanted to know something about gems, when I mentioned "refractive index" is what was used in terms of how we would walk through the gravel pit at a time of day(preferably evening). This would allow the sun to shine through the agates and capture our attention, as they sat amongst all the other stones in the gravel pit. We would make a game of it, and who ever got three agates first would be a winner that day.

Opticks is a book written by English physicist Isaac Newton that was released to the public in 1704. It is about optics and the refraction of light, and is considered one of the great works of science in history.

Opticks was Newton's second major book on physical science. Even if he had not made his better-known discoveries concerning gravity and the invention of the calculus, Opticks would have given him the reputation as one of the greatest scientists of his time.

This work represents a major contribution to science, different from—but in some ways rivaling—the Principia. The Opticks is largely a record of experiments and the deductions made from them, covering a wide range of topics in what was later to be known as physical optics. That is, this work is not a geometric discussion of catoptrics or dioptrics, the traditional subjects of reflection of light by mirrors of different shapes and the exploration of how light is "bent" as it passes from one medium, such as air, into another, such as water or glass. Rather, the Opticks is a study of the nature of light and colour and the various phenomena of diffraction, which Newton called the "inflexion" of light.

In this book Newton sets forth in full his experiments, first reported in 1672, on dispersion, or the separation of light into a spectrum of its component colours. He shows how colours arise from selective absorption, reflection, or transmission of the various component parts of the incident light. His experiments on these subjects and on the problems of diffraction (which he never fully mastered) set the subject of optics on a new level.

Sunday, February 11, 2007

Neutrino Mixing Explained in 60 seconds

I added this post to demonstrate the connection to what is behind the investigation to "neutrino mixing" that needs further clarification. So I put this blog post together below.

It "allows the sources" to consider the question of how we see the existing universe. How perspective has been focused toward the reductionist understanding while we ponder the very nature of the universe.



For example, when neutrinos interact with matter they produce specific kinds of other particles. Catch the neutrino at one moment, and it will interact to produce an electron. A moment later, it might interact to produce a different particle. "Neutrino mixing" describes the original mixture of waves that produces this oscillation effect.


By my very nature, I have adopted the views of the Pythagoreans in that, what I see of the universe has it's counter part as some feature within our determinations "as the background" to the "nature of all matter." It's effect, from understanding the very basis of "particle creation" has this factor to be included in our determinations of that particle in question.

So, what views shall we assign to the Higg's Boson Field? The view of the cosmos at large? We needed to see that such events can and do happen within the universe. To see them at a level that had not been considered in terms of the microstate blackhole creation that is created from such particle collisions? One needed to identify where "these points" could exist not only in the collider, but in the cosmos at large. How else could you explain the division you have assigned the make up of the cosmos?



Usually all physicists see are the remnants of a new particle decaying into other types of particles. From that, they infer the existence of the new species and can determine some of its characteristics.


So we move from the limitations of the standard model?

This is a fixture of what has been accomplished, yet, how could we see things as so different to include gravity as a feature and new force carrier? If we are to consider the energy of all these matters, then how else could you have included gravity?



To slow them down, theorists proposed a mysterious, universe-filling, not-yet-seen "liquid" called the Higgs field. Also, physicists now understand that 96 percent of the universe is not made of matter as we know it, and thus it does not fit into the Standard Model. How to extend the Standard Model to account for these mysteries is an open question to be answered by current and future experiments.


While it is some what mysterious, the applications as ancient as they may seem, they are not apart from our constitutions as we have applied our understanding of the universe it seems:)