Pages

Showing posts with label Navier Stokes. Show all posts
Showing posts with label Navier Stokes. Show all posts

Monday, March 03, 2014

Laminar Flow




If symmetry is to have ever existed,  and,  you return to the original state, problems enter the picture because you are introducing "some thing" to the system? For example, you can only back up so far. The question is what does this fifth dimensional perspective allow you? You know Gravity and light have been joined?

Yes, when you change visual perspective, what does a line look like, as in viewing a cylindrical system, with such a viscosity?

You cannot show where droplets were injected, and to go beyond that point of submersion, an example of what begin in rotation would on reversibility, happen same. So, something is missing?

 My question is: could you ever learn the answer to an otherwise-intractable computational problem by jumping into a black hole?

Entanglement,  is not an option in such a system ? As is FTL, medium dependent? Changing viscosity rates show speed of light variance?

I want to discuss today reflect a different perspective: one that regards computation as no more “arbitrary” than other central concepts of mathematics, and indeed, as something that shows up even in contexts that seem incredibly remote from it, from the AdS/CFT correspondence to turbulent fluid flow. See:Recent papers by Susskind and Tao illustrate the long reach of computation
***


Fluid Velocity Profile
Visualization above,  has specific destination in relation to specificity of drop,  as to show distance from center?


Kaluza-Klein theory is a model which unifies classical gravity and electromagnetism. It was discovered by the mathematician Theodor Kaluza that if general relativity is extended to a five-dimensional spacetime, the equations can be separated out into ordinary four-dimensional gravitation plus an extra set, which is equivalent to Maxwell's equations for the electromagnetic field, plus an extra scalar field known as the "dilaton". Oskar Klein proposed that the fourth spatial dimension is curled up with a very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies.

Kaluza-Klein theory can be extended to cover the other fundamental forces - namely, the weak and strong nuclear forces - but a straightforward approach, if done using an odd dimensional manifold runs into difficulties involving chirality. The problem is that all neutrinos appear to be left-handed, meaning that they are spinning in the direction of the fingers of the left hand when they are moving in the direction of the thumb. All anti-neutrinos appear to be right-handed. Somehow particle reactions are asymmetric when it comes to spin and it is not straightforward to build this into a Kaluza-Klein theory since the extra dimensions of physical space are symmetric with respect to left-hand spinning and r-hand spinning particles.
Also to further speculate.....

Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies. (This occurs because electromagnetism is a U(1) symmetry theory and U(1) is simply the group of rotations around a circle).


Placing comment here until approved  or not approved.

Instituting a experimental argument is necessary, when t comes to symmetry in the realtor of viscosity and entanglement? Light in Ftl is medium dependent?

This sets up analogue example of the question of firewalls as to imply Black holes and information?

Layman wondering.

***

See also:

Friday, July 25, 2008

The Extra Dimensions in the LHC

String Theorists, for a million bucks, do you think you can answer "the question" and it's applicability?

Now it should be clear here that while I speak of extra dimensions I am referring to that energy that is not accountable, "after the collision process and particle identifications have been calculated."

For the first time the LHC reaches temperatures colder than outer space

Geneva, 10 April 2007. The first sector of CERN1's Large Hadron Collider (LHC) to be cooled down has reached a temperature of 1.9 K (–271°C), colder than deep outer space! Although just one-eighth of the LHC ring, this sector is the world’s largest superconducting installation. The entire 27–kilometre LHC ring needs to be cooled down to this temperature in order for the superconducting magnets that guide and focus the proton beams to remain in a superconductive state. Such a state allows the current to flow without resistance, creating a dense, powerful magnetic field in relatively small magnets. Guiding the two proton beams as they travel nearly the speed of light, curving around the accelerator ring and focusing them at the collision points is no easy task. A total of 1650 main magnets need to be operated in a superconductive state, which presents a huge technical challenge. "This is the first major step in the technical validation of a full-scale portion of the LHC," explained LHC project leader Lyndon Evans.

There are three parts to the cool down process, with many tests and intense checking in between. During the first phase, the sector is cooled down to 80 K, slightly above the temperature of liquid nitrogen. At this temperature the material will have seen 90% of the final thermal contraction, a 3 millimetre per metre shrinkage of steel structures. Each of the eight sectors is about 3.3 kilometres long, which means shrinkage of 9.9 metres! To deal with this amount of shrinkage, specific places have been designed to compensate for it, including expansion bellows for piping elements and cabling with some slack. Tests are done to make sure no hardware breaks as the machinery is cooled.

The second phase brings the sector to 4.5 K using enormous refrigerators. Each sector has its own refrigerator and each of the main magnets is filled with liquid helium, the coolant of choice for the LHC because it is the only element to be in a liquid state at such a low temperature.

The final phase requires a sophisticated pumping system to help bring the pressure down on the boiling Helium and cool the magnets to 1.9 K. To achieve a pressure of 15 millibars, the system uses both hydrodynamic centrifugal compressors operating at low temperature and positive-displacement compressors operating at room temperature. Cooling down to 1.9 K provides greater efficiency for the superconducting material and helium's cooling capacity. At this low temperature helium becomes superfluid, flowing with virtually no viscosity and allowing greater heat transfer capacity.

“It's exciting because for more than ten years people have been designing, building and testing separately each part of this sector and now we have a chance to test it all together for the first time,” said Serge Claudet, head of the Cryogenic Operation Team. For more information and to see regular updates, see http://lhc.web.cern.ch/lhc/.

The conditions are now established to allow testing of all magnets in this sector to their ultimate performance.


I am not going to go into the relevance here but to describe how "I speculate" the "extra energy is lost" while delivering the expected results of the LHC microscope in it's efforts.

This is based on the Navier–Stokes existence and smoothness that "may be" responsible for this loss. The understanding as I have come to see it is that the QGP by it's very nature is conclusively reached it total state, and that by reaching it, it brought in line, with the Superconductors relations. The principal here that a relativistic conditon is arrived at in the super fluid condition that I perceive is, in relation to the aspect of the Helium used to cool the LHC

Navier-Stokes Equation

Waves follow our boat as we meander across the lake, and turbulent air currents follow our flight in a modern jet. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to the Navier-Stokes equations. Although these equations were written down in the 19th Century, our understanding of them remains minimal. The challenge is to make substantial progress toward a mathematical theory which will unlock the secrets hidden in the Navier-Stokes equations.

Thursday, February 28, 2008

A New Cosmological View?

Mathematics is not the rigid and rigidity-producing schema that the layman thinks it is; rather, in it we find ourselves at that meeting point of constraint and freedom that is the very essence of human nature.
- Hermann Weyl

Perspective has been push back in a reductionistic sense and understanding in a cosmological sense. The limit to which this process could incorporate a relativistic explanation would have been a glorious one indeed?

Navier-Stokes equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the sum of dissipative viscous forces (similar to friction), changes in pressure, gravity, and other forces acting inside the fluid: an application of Newton's second law to fluid.

They are one of the most useful sets of equations because they describe the physics of a large number of phenomena of academic and economic interest. They may be used to model weather, ocean currents, water flow in a pipe, flow around an airfoil (wing), and motion of stars inside a galaxy. As such, these equations in both full and simplified forms, are used in the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of the effects of pollution, etc. Coupled with Maxwell's equations they can be used to model and study magnetohydrodynamics.

The Navier-Stokes equations are also of great interest in a purely mathematical sense. Somewhat surprisingly, given their wide range of practical uses, mathematicians have yet to prove that in three dimensions solutions always exist (existence), or that if they do exist they do not contain any infinities, singularities or discontinuities (smoothness). These are called the Navier-Stokes existence and smoothness problems. The Clay Mathematics Institute has called this one of the seven most important open problems in mathematics, and offered a $1,000,000 prize for a solution or a counter-example.


So where is that? Where is the "perfect fluid" and what has this to do with the current state of the universe? The "effect of collisions" which produce a Cerenkov effect. Is this a "faster then the speed of light" from such a process being encapsulating in that early universe condition?

As perplexing as this sounds, it sets up the understanding that Super Cosmologists have to think outside the box. If no information is lost, then where did the information come from? There is a topological unfolding here that speak to mathematical designs all the while it integrates the Navier-Stokes equations in terms of it's relativistic explanation, derived from the very moments of that creation?

"Helium-3 experiment replicates colliding-brane theory of cosmology."

So as silly as some would have you believe that new models do not have any chance from a mathematical perspective of having lost touch with reality, is the need to explain the process in terms of natural occurrences that are going on around us, which we were not previously aware of.

Information Scrambled, Yet Reassembled

Brian Greene-
My area of research is superstring theory, a theory that purports to give us a quantum theory of gravity as well as a unified theory of all forces and all matter. As such, superstring theory has the potential to realize Einstein's long sought dream of a single, all encompassing, theory of the universe. One of the strangest features of superstring theory is that it requires the universe to have more than three spatial dimensions. Much of my research has focused on the physical implications and mathematical properties of these extra dimensions --- studies that collectively go under the heading "quantum geometry".

Quantum geometry differs in substantial ways from the classical geometry underlying general relativity. For instance, topology change (the "tearing" of space) is a sensible feature of quantum geometry even though, from a classical perspective, it involves singularities. As another example, two different classical spacetime geometries can give rise to identical physical implications, again at odds with conclusions based on classical general relativity.

Superstring theory is most relevant under extreme physical conditions such as those that existed at the time of the big bang. Recently, we have formed a new institute at Columbia called ISCAP (Institute for Strings, Cosmology, and Astroparticle Physics) dedicated to understanding the interface of superstring theory and cosmology. One primary focus of ISCAP is the search for subtle signatures of string theory that may be imprinted in the precision cosmological data that will be collected through a variety of experiments over the next decade.


In levitation post I try to explain how using Susskind's thought experiment we may derive information about the geometrical conditions being developed from "Bob" entering the blackhole on the back of a elephant.

First let me remind you of where you had been taken in terms of your view of the universe. Had you realized that you are now given a micro perspective on the very nature of this universe? That given the circumstance, the elephant takes on a whole new meaning in terms of searching to understand quantum gravity at a level not considered before.

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! but the Elephant
Is very like a WALL!"


The Second, feeling of the tusk,
Cried, "Ho, what have we here,
So very round and smooth and sharp?
To me 'tis mighty clear
This wonder of an Elephant
Is very like a SPEAR!"

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
"I see," quoth he, "the Elephant
Is very like a SNAKE!"

The Fourth reached out an eager hand,
And felt about the knee
"What most this wondrous beast is like
Is mighty plain," quoth he:
"'Tis clear enough the Elephant
Is very like a TREE!"

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a FAN!"

The Sixth no sooner had begun
About the beast to grope,
Than seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the Elephant
Is very like a ROPE!"

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!


So what does Susskind do? You see the very question about interpreting events in this way, ask that we push our perceptive toward topological inferences of continuity? There are no current geometrics that can be explained from inside the blackhole. Pushing perspective needed a method to help us orientate what is happening at that geometrical level.

Quantum Gravity: A physical theory describing the gravitational interactions of matter and energy in which matter and energy are described by quantum theory. In most, but not all, theories of quantum gravity, gravity is also quantized. Since the contemporary theory of gravity, general relativity, describes gravitation as the curvature of spacetime by matter and energy, a quantization of gravity implies some sort of quantization of spacetime itself. Insofar as all extant physical theories rely on a classical spacetime background, this presents profound methodological and ontological challenges for the philosopher and the physicist.


Unfortunately I lost the link to a introduction of a book below yet showed this, to help one define the context of the work that has to be done.

Quantum gravity is perhaps the most important open problem in fundamental physics. It is the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the subject of quantum gravity, hard-to-find mathematical material, and a discussion of some philosophical issues raised by the subject. This fascinating text is ideal for graduate students entering the field, as well as researchers already working in quantum gravity. It will also appeal to philosophers and other scholars interested in the nature of space and time.

Sunday, December 30, 2007

Zombie Central

Peter Woit:Hopefully Nature won’t take its place as Zombie-central…

December 30th, 2007 at 11:10 am if link deleted(yep! it sure has:) see here

Plato said,

"I have never deviated from the name I use, so you get the sense of who I am.

I do not see how "pushing back the physics and energies involved" would have made these issues abut cosmology inept or classed as fantasy in the making.

Tim May, some things helped toward our understanding whether they are in the kitchen "to help gain in conceptual understanding, what others are less then able to explain in their opinion biased.

Gabe:I really don’t have any knowledge of this, but: What exactly are they trying to say about liquid helium phases and extra dimensions?


Has anyone has sufficiently answered Coin or Gabe in their questions to have offered a conclusion?

Thanks Bee for challenging what would have otherwise been a chorus of the same ole, same ole."


Now what choice do I have, if I were to comment on anything that had to do with what "String theory is doing?" Now, I would have supposedly worn out the title of any string theory article as coming from Zombie central.

Now you know the title of this post and it's origination. The source of inspiration that allows me to comment and let stand, as to the substance of Peter Woit's post. The comments that come along as well.

Zombies

What more can I say, that by putting out front the reasons why this process is not just some fantasy woven for illusionists Peter seems to qualify. To all those who may speak toward the topic of string theory or not.

Will media just leave it "to the expert" to speak for them and not challenge what is the highest opinion Peter has for the topic of string theory? I guess if you are not willing to do the work, then like Scientist, it is better to not write an article and let it die a quick death.

The Articles in Question?

Since I too cannot gain access to the Nature article without paying, I can only go by the "press releases" that Peter has been kind enough to show us. So these are directed to the Nature article.



ow-temperature physicists at Lancaster University may have found a laboratory test of the ‘untestable’ string theory.

The test – which uses two distinct phases of liquid helium - is reported online this week in Nature Physics (published 23 December). Their paper will also be published as the cover article in the paper edition of Nature Physics in January.

String theory is a multidimensional theory based on vibrating strings, as opposed to the point particles described in the Standard Model.


Second Article

DOI: 10.1038/nphys815-Richard Haley, George Pickett and co-workers have taken a lateral step to address this barrier. They cool helium-3 isotope to a superfluid state — that is, a quantum fluid with non-classical properties such as completely frictionless flow. Adding a magnetic field creates a second superfluid phase, and the interface between these two phases behaves like a two-dimensional brane. Indeed, the collision of a brane–antibrane pair leaves traces of a stringy residue of defects: a tangle of vortices.


Third article

Can you model what happened after the Big Bang in your lab?

Helium-3 experiment replicates colliding-brane theory of cosmology.
Yes, according to one group of physicists. A team at Lancaster University in the United Kingdom has used liquid helium and a magnetic field to build a finger-sized representation of the early cosmos. Their findings, published today in Nature Physics 1, could help string theorists to refine their models.


Fourth Article

Again it is one that has to be purchased from nature. All I can do it "re-quote" the selections Peter has made, and direct you to the quotes in question. You have to take my word for what is represented and how it is used by Peter. Sorry. See source of quotes here

The subject of string cosmology is a hot one these days, with theoretical advances in understanding string dynamics riffing with recent precise observations of the cosmic microwave background


The quality of the details of the comparison between 3He and cosmology is not really the point. Like a tap-dancing snake, what is amazing is not that it is done well, but that it is done at all.


Contribution to Zombie Central?

I can only assume that the example given is none other then what Peter has classified?

Does one of these test tubes hold a baby Universe?

The test tube, the size of a little finger, has been cooled to a fraction of a degree above the lowest possible temperature, absolute zero, which is just over 273 degrees below the freezing point of water.

Inside the tube an isotope of helium (called helium three) forms a "superfluid", an ordered liquid where all the atoms are in the same state according to the theory that rules the subatomic domain, called quantum theory.

What is remarkable is that atoms in the liquid, at temperatures within a thousandth of a degree of absolute zero, form structures that, according to the team at Lancaster University, are similar those seen in the cosmos.

"In effect, we have made a universe in a test tube," says Richard Haley, who did the work with Prof George Pickett and other members of the "Ultra-low Temperature Group."



Now, just hold your horses here while we consider not only the context of this article by Richard Highfield, but of the very questions I myself have asked that we might consider the context of the Telegraph article other then contributing to Zombie Central.

Warning to Viewers

It is true that there has been a lot of debate about how information currently being dealt within in science articles are giving concern to people at the forefront of science. So in this effort I see what Peter is saying. Scientists are indeed asking for this responsibility, and not just of the media themself , but of the individual in their "pursuit of the truth" of what is being portrayed out there in the science media's global vision.

I do not sanction "the classifications" that have been drummed up by Peter Woit, from intelligent design theorists, to Zombies.

The View of the Cosmos?

Now why is it that we would look to the cosmos and ask ourselves about the views that would happen in the context of universal display, as having some relevances to the microsomal world that surrounds us.

Over and over again, we are directed to applications of what happens in that cosmos as experimental processes which reveal the origins of the universe in that microcosm view? So they use a test tube. The origins of life has it's basis in that tube on a simplistic level, whether you'd like to think so or not.

Would it have been better to use the "image of the tube" and an emergent image of the colliders over top of it, as a better view of the microscopic view of the world we live in?

Powers of Ten

Many physical quantities span vast ranges of magnitude. Figures 0.1 and 0.2 use images to indicate the range of lengths and times that are of importance in physics.

Many of us understand the powers of ten, Qui?

See: Perspectives on the Power of Ten

So to get from the cosmos pallet of investigation, to one of drawing analogical
views of the vortices, is not so uncommon that we can see such vortices out there in the cosmos and not draw some conclusion to the "relativistic interpretation" that may arise in some super fluid?

I can understand Tim May's "bubble in the test analogy in the kitchen," but I would have drawn a better parallel to sonofusion(you can find examples of this on this site) as an example about reduction to the "principals of the early universe." While I see such collapse dynamically related to "gravitational collapse" this is my view with regards to the increase in temperature values that may have been attributed to the ideas about the energy increase in blackhole development and motivation for providing the routes for cosmological expansion rates. An analogy, yes.

The escape pathway for that "extra energy" to loose itself, while the computations of the values of particle creations are left for inspection. Where did that extra energy go? Is it such a "bad question" to have when looking at the microscopic view of particle creation in the birth of our cosmos? To have the universe being in such a cosmological state, that the variance of speed of expansion shall vary? Explained, with such a idea?

Relativistic Fluid Dynamics: Physics for Many Different Scales-Nils Andersson and Gregory L. Comer

In writing this review, we have tried to discuss the different building blocks that are needed if one wants to construct a relativistic theory for fluids. Although there are numerous alternatives, we opted to base our discussion of the fluid equations of motion on the variational approach pioneered by Taub [108] and in recent years developed considerably by Carter [17, 19, 21]. This is an appealing strategy because it leads to a natural formulation for multi-fluid problems. Having developed the variational framework, we discussed applications. Here we had to decide what to include and what to leave out. Our decisions were not based on any particular logic, we simply included topics that were either familiar to us, or interested us at the time. That may seem a little peculiar, but one should keep in mind that this is a “living” review. Our intention is to add further applications when the article is updated. On the formal side, we could consider how one accounts for elastic media and magnetic fields, as well as technical issues concerning relativistic vortices (and cosmic strings). On the application side, we may discuss many issues for astrophysical fluid flows (like supernova core collapse, jets, gamma-ray bursts, and cosmology).

In updating this review we will obviously also correct the mistakes that are sure to be found by helpful colleagues. We look forward to receiving any comments on this review. After all, fluids describe physics at many different scales and we clearly have a lot of physics to learn. The only thing that is certain is that we will enjoy the learning process!


So you understand that the views of the string theorist is not limited to the microcosmic view, but endorses the cosmological one as well.:) See the Lagrangian views supplied on this site to understand how gravity has been incorporated in the cosmological view.

Monday, November 12, 2007

Where Spacetime is flat?

......A Condensative Result exists. Where "energy concentrates" and expresses outward.

I mean if I were to put on my eyeglasses, and these glasses were given to a way of seeing this universe, why not look at the whole universe bathed in such spacetime fabric?

This a opportunity to get "two birds" with one stone?

I was thinking of Garrett's E8 Theory article and Stefan's here.

On March 31, 2006 the high-resolution gravity field model EIGEN-GL04C has been released. This model is a combination of GRACE and LAGEOS mission plus 0.5 x 0.5 degrees gravimetry and altimetry surface data and is complete to degree and order 360 in terms of spherical harmonic coefficients.

High-resolution combination gravity models are essential for all applications where a precise knowledge of the static gravity potential and its gradients is needed in the medium and short wavelength spectrum. Typical examples are precise orbit determination of geodetic and altimeter satellites or the study of the Earth's crust and mantle mass distribution.

But, various geodetic and altimeter applications request also a pure satellite-only gravity model. As an example, the ocean dynamic topography and the derived geostrophic surface currents, both derived from altimeter measurements and an oceanic geoid, would be strongly correlated with the mean sea surface height model used to derive terrestrial gravity data for the combination model.

Therefore, the satellite-only part of EIGEN-GL04C is provided here as EIGEN-GL04S1. The contributing GRACE and Lageos data are already described in the EIGEN-GL04C description. The satellite-only model has been derived from EIGEN-GL04C by reduction of the terrestrial normal equation system and is complete up to degree and order 150.


How many really understand/see the production of gravitational waves in regards to Taylor and Hulse?

To see Stefan's correlation in terms of "wave production" is a dynamical quality to what is still be experimentally looked for by LIGO?

As scientists, do you know this?

6:41 AM, November 11, 2007
See here

Thus the binary pulsar PSR1913+16 provides a powerful test of the predictions of the behavior of time perceived by a distant observer according to Einstein's Theory of Relativity.


Since we know the theory of Relativity is about Gravity, then how is it the applications can be extended to the way we see "anew" in our world?

A sphere, our earth, not so round anymore.

Uncle has tried to correct me on "isostatic adjustment."

Derek Sears, professor of cosmochemistry at the University of Arkansas, explains. See here

Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes. K. Shumacker. Scientific America


Do not have time to follow up at this moment.

7:02 AM, November 11, 2007
.....and here.


In context of the post and differences, I may not have pointed to the substance of the post, yet I would have dealt with my problem in seeing.

In general terms, gravitational waves are radiated by objects whose motion involves acceleration, provided that the motion is not perfectly spherically symmetric (like a spinning, expanding or contracting sphere) or cylindrically symmetric (like a spinning disk).

A simple example is the spinning dumbbell. Set upon one end, so that one side of the dumbell is on the ground and the other end is pointing up, the dumbbell will not radiate when it spins around its vertical axis but will radiate if it tumbles end-over-end. The heavier the dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. If we imagine an extreme case in which the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off.


Given the context of the "whole universe" what is actually pervading, if one did not include gravity?



So singularities are pointing to the beginning(i), yet, we do not know if we should just say, the Big Bang, because, one would had to have calculated the energy used and where did it come from "previous" to manifest?

So some will have this philosophical position about "nothing(?)," and "everything as already existing."

Wherever there are no gravitational waves the space time is flat. One would have to define these two variances. One from understanding the relation to "radiation" and the other "perfectly spherically symmetric."

Thursday, April 12, 2007

The CrossOver Point within the Perfect Fluid?

I had been following this research because of what I had been trying to understand when we take our understanding down to a certain level. That level is within the context of us probing the collision process for evidence of "some new physics" that we had not seen before.

Evidence for Neutrino Oscillations from the LSND Experiment
One of the only ways to probe small neutrino masses is to search for neutrino oscillations, where a neutrino of one type (e.g. numubar ) spontaneously transforms into a neutrino of another type (e.g. nuebar ) For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. The probability for 2-flavor neutrino oscillations can then be expressed as P=sin2(2theta) sin2(1.27 m2L/E) , where theta is the mixing angle, m2 is the difference in neutrino masses squared in eV2, L is the neutrino distance in meters, and E is the neutrino energy in MeV. In 1995 the LSND experiment [1] published data showing candidate events that are consistent with numubar->nuebar oscillations. [2] Additional data are reported here that provide stronger evidence for numubar->nuebar oscillations [3] as well as evidence for numu->nue oscillations. [4] The two oscillation searches have completely different backgrounds and systematics from each other.


What valuation of this process allows us to think that while speaking to "probing this perfect fluid" that we had not discovered some mechanism within it, that allows us to see Coleman Mandula effects being behind, as a geometrical unfoldment from one state into another?

If we had looked at the Genus 1 figure then what avenue would help us discern what could come from the string theory landscape and the "potential hill" discerned from the blackhole horizon? What tunnelling effect could go past the hill climbers and valley crossers to know that you could cut "right through the hill?"

MiniBooNE opens the box

BATAVIA, IllinoisScientists of the MiniBooNE1 experiment at the Department of Energy's Fermilab2 today (April 11) announced their first findings. The MiniBooNE results resolve questions raised by observations of the LSND3 experiment in the 1990s that appeared to contradict findings of other neutrino experiments worldwide. MiniBooNE researchers showed conclusively that the LSND results could not be due to simple neutrino oscillation, a phenomenon in which one type of neutrino transforms into another type and back again.

The announcement significantly clarifies the overall picture of how neutrinos behave.


So while I am looking for some indications as I did in the strangelet case, as, evidence of this crossover, this had to have some relation to how we seen the neutrinos in development. This was part of the development as we learnt of the history of John Bahcall.

John Bahcall 1934 to 2005 See also "John Bahcall and the Neutrinos"


Plato Apr 11th, 2007 at 8:47 pm

the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever.” See here

No cross over point? What role would Navier Stokes play in this?
See here

This does not minimize the work we see of Gran Sasso in relation to the LHC project.

Honestly, I do not know how someone who could work on the project, could not know what they were working on? It as if the "little parts" of the LHC project only cater to the worker Bees working just aspects of the project and their specializations.

Whilst now, you go way up and overlook this project. To see the whole context measured within that "one tiny big bang moment." Trust me when I say, we shall not minimize the effect of calling the collision process as "one tiny moment," for you may never see the whole context of this project being developed for this "one thing."

I did not realize the shortcomings that scientists place on themselves when they do specialize. I just assumed they would know as much as I did and see the whole project? I do not say this unkindly, just that it is a shock to me that one could work the string theory models and not realize what they are working on. I have heard even Jacques say there is no connection and listening to Peter Woit, I was equally dismayed that he did not realize what the string theory model was actually doing as it found it's correlation in the developing views of how we look at the moments of creation.

Bigger is better if you’re searching for smaller

Neutrinos may be in CERN's Future

The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.
See "CERN and Future Experiments"

Plato Apr 12th, 2007 at 7:31 am

I think my comment on previous post of looking for the perfect fluid should have been here.

Also I do not think this changes how we look at string theory as a model probing the perfect fluid, and "the understanding" of developing a mechanism for this "cross over point?"

Topologically, how would this have been revealed in the string theory landscape??
See here and know that Clifford again deleted the short little post above. The point is I think for some reason once I mention string theory or evn M theory in relation to what is transpiring in the views of model development he doe not like this and would be support by Jacques as well.

That would be my job to convince them and anyone else that hold their views that taking our view to the microseconds, there is a definite relation to the timeline whether you agree with this or not. By introducing "the point of the cross over" you in effect have taken the model and presented it as part of the mechanism for this universe and effectively given new meaning to the "string theory landscape."

You may want it to be "background independent" like Lee wants it to be, but if you view the background as a oscillatory one, then any idea as configured to the mass of any particle, then you have define this particle as a energy relation? So Lee does not like the oscillatory universe?

See "Finiteness of String Theory and Mandelstam"

It is contained "within the moment" of the creation of this universe, yet, we do not know what design this particle is to be in context of the microscopic view of geometrical topologically finishes? As the Genus 1 figure and as an expression of this universe? You had to know what was lying in those valleys, and the potentials of expression, and I relay that in the blackhole horizon as a potential hill.

The time has come for some changes in this blog and I have been thinking about moving on. While a layman, I do not like to be treated like a fool. Maybe not educated fully and with some work to do, but never as a fool.

Monday, April 09, 2007

Blackhole evaporation: What's New From the Subatomic-Sized Holes ?

...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein
See What is Cerenkov Radiation?

We are being "politically correct" (a sociological observation) when we change the wording of the "microstate blackhole production" to "Sub Atomic Sized Holes?" To maybe "inferr" the desired differences of cosmological blackholes, versus, what we see quickly evaporating in subatomic-sized to be revealed in a footprint?

David Kestenbaum, NPR-Alvaro De Rujula is a physicist at CERN, the world's largest particle physics laboratory. Three hundred feet below his desk, workers are building a massive particle accelerator that will be capable of reproducing energies present just after the big bang.

Let's pretend that the reporting was not so good back in 1999, and the information we had then was to cause some needless concerns? Good reporting already existed in term of what the Dark Matter was doing. Now it's okay if someone else saids it, and reveals all the dark matter info with Wikipedia. How nice:)Your credible?

Was there any evidence to think a method was already determined "back then" and has become part of the process of discovery?

Bad reporting?

At first bad reporting? Producing fear into the public mind?

In recent years the main focus of fear has been the giant machines used by particle physicists. Could the violent collisions inside such a machine create something nasty? "Every time a new machine has been built at CERN," says physicist Alvaro de Rujula, "the question has been posed and faced." August 1999

Peter Steinberg, when at Quantum diaries, lead us through this.

The creepy part of these kind of discussions is that one doesn't say that RHIC collisions "create" black holes, but that nucleus-nucleus collisions, and even proton-proton collisions, are in some sense black holes, albeit black holes in some sort of "dual" space which makes the theory easier.


Alvaro was the one who put "James Blodgett of Risk assessment" at ease in regards to strangelets. Now, could strangelets have been considered a consequence of the evaporation? Does this not look similar?

deconstruction: event display
Usually all physicists see are the remnants of a new particle decaying into other types of particles. From that, they infer the existence of the new species and can determine some of its characteristics.
SeeNeutrino Mixing Explained in 60 seconds

Now everything is safe and cozy with these subatomic-sized holes which would simply evaporate. :) How would you know "what is new" after the subatomic holes had evaporated? Are sterile neutrinos new?

While these paragraphs have been selective, they show that experimental processes are being used and detective work applied.

Current evidence shows that neutrinos do oscillate, which indicates that neutrinos do have mass. The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos. Therefore, there might be a fourth neutrino, which is currently being called a "sterile" neutrino, which interacts more weakly than the other three neutrinos.

Any add on experimental processes at Cern with regards to the LHC are reflect in this second paragraph?

"We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunnelling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

See Gran Sasso

So while one may think I have some "new process" to make the world happy, it is nothing of the sort. It is interpreting the current theoretical models in regards to current experimental research.

For some reason some scientist think that one can be devoid of this reasoning and apply it to any model/person, while the scientist/lay people already know what is required.

This has been reflected time and again through the interactions of scientist with the public. What is one to think when one scientist calls another scientists devoid of such reason, while he works to develop the string theory model. They don't like that do they?:)


So do you think that Clifford of Asymptotia is practising what he did not like in Peter Woit's summation of the state of affairs in string theory? That while criticizing him he was doing the same thing to others? I laughed when I came across the censoring post on Not even Wrong, and why I had to write my new article on Censoring.

I have never seen such "happy trigger fingers" as to deletion of posts that would contradict the statements Clifford could make about another person, or what Peter Woit could say about "Clifford censoring" statements. Peter provides a forum for those who feel shafted who could voice there displeasure?:)

Don't worry Peter I certainly won't be crying on your blog. Deletion knows it boundaries in terms of censoring there too.:) But anyway, onto the important stuff.

This summer, CERN gave the starting signal for the long-distance neutrino race to Italy. The CNGS facility (CERN Neutrinos to Gran Sasso), embedded in the laboratory's accelerator complex, produced its first neutrino beam. For the first time, billions of neutrinos were sent through the Earth's crust to the Gran Sasso laboratory, 732 kilometres away in Italy, a journey at almost the speed of light which they completed in less than 2.5 milliseconds. The OPERA experiment at the Gran Sasso laboratory was then commissioned, recording the first neutrino tracks. See Strangelets and Strange Matter

Tunnelling in the string theory landscape

Now it may not seem so odd that I would place a string theory landscape picture up for revue, and have one think about hill climbers and valley crossers. Would it be wrong not to include the "potential hills" and the thought of the "blackhole horizon?" It was "theoretical appealing" as a thought experiment to me, to think about what could traverse those potential hills. We had to use "a mechanism" to help us understand how the cross over point was being established and "new universes" begin to unfold? New particle creation from such collision processes had to be established first. Both at Cern and with "high energy particles from space." IceCube was to be the backdrop for the footprint, and resulting Cerenkov radiation from that collision process?

One needed to see such experiment as taking place currently to help us see the jest of where science is currently taking us on our journey's. So you had to be able to see this process in action back to the insecurities of our ignorance, in relation too, sub-atomic sized holes...ahem...dualites?

So you had to know that the collision process would detail some "crossover point" for consideration? What this means that "after the collision process" you are given a new particle with which to work.

You need to be able to capture this "new particle" and the mediums with which this is done, are the barriers that supply the back drop for foot prin,t to what can be traversed in faster then light potentials. Again Gran Sasso, and let's not forget ICECUBE.

Cross over point

Is it not important to see the experimental process as a natural one?

Bringing the Heavens down to Earth

If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007. See here


So here we are talking about the "before" and "after" and we had not spoken about the point of exchange here? If I were to tell you that such a reductionistic process had taken us to the limits what the heck could this mean? That we had indeed found the transference point of energy to matter, matter to energy and we say it may be the perfect fluids that supplies us this "anomalistic behaviour" with which we will introduce the GR? Talk about Navier-stokes in relation to the perfect fluid and what and how something can traverse through and come out on the other side?

Tuesday, April 03, 2007

The Elixir of the Bee Community

You should know that that the names of the Bee people have their names protected, to protect the community at large. Some larger human species, like to use the benefits of this society, without recognizing the constructive efforts that goes into this elixir Production.

Marc D. Hauser:

We know that that kind of information is encoded in the signal because people in Denmark have created a robotic honey bee that you can plop in the middle of a colony, programmed to dance in a certain way, and the hive members will actually follow the information precisely to that location. Researchers have been able to understand the information processing system to this level, and consequently, can actually transmit it through the robot to other members of the hive.


See Bumblebee Wing Rotations and Dancing

Many times people have used Ant world to illustrate their ideas, but the time has come, that the relationship to perspective dynamics at that level should think about the vast literature of Bee people.

The second of five Lagrangian equilbrium points, approximately 1.5 million kilometers beyond Earth, where the gravitational forces of Earth and Sun balance to keep a satellite at a nearly fixed position relative to Earth.

See Second of Five Lagrangian Equilibrium Points

One should not think these people have been disassociated from reality, and that it has only been our ignorance of the economics and flight patterns, that we failed to see the dynamical community that bee propagation goes through, in order to continue it's rich development. The elixir production is coming out of that community.

There are two reasons that having mapped E8 is so important. The practical one is that E8 has major applications: mathematical analysis of the most recent versions of string theory and supergravity theories all keep revealing structure based on E8. E8 seems to be part of the structure of our universe.

The other reason is just that the complete mapping of E8 is the largest mathematical structure ever mapped out in full detail by human beings. It takes 60 gigabytes to store the map of E8. If you were to write it out on paper in 6-point print (that's really small print), you'd need a piece of paper bigger than the island of Manhattan. This thing is huge.


See Solidification of Geometrical Presence

Flower pollination is a interesting thing having considered the world that the Bee people live in. After all, the dynamics and travel used, one could not help being enamoured with the naturalness with which one may try to reproduce in human mechanistic movement, that the Bee people live and breathe.

Humanistic intelligences is a larger format, to what they do in that Bee community?

Cell construction provides for the further propagation of the community, but no where do the Bee people give the particulates of the cell construction? Humanistic intelligences only see the community with regards to the Bee movements :)The Bee people have a greater depth to what is seen.

Observing the community at large, the Bee people have much more to present then thinking just in the way they work. Who is Navier Stokes of the humanistic intelligences to think only he could reveal anomalistic perception in the nature of viscosity, not to think there is relativistic conditions that the Bee people bring to reductionism views in physics?

Worker bees perform a host of tasks from cleaning the hive cells to looking after the larvae
The workers have a variety of tasks to perform – some collect nectar from flowers, others pollen, some are engaged in constructing new combs, or looking after the developing larvae, some perform the duty of cleaning the cells or feeding the larvae on special secretion that they regurgitate from their mouth parts. In these insects the exact task of any individual depends largely on its age, although there is a certain flexibility, depending on the requirements of the hive.


So I've taken a different tack here. If it is so hard for the community at large to comprehend that extra dimensional thinking then there has to be some way in which we as lay people can envision the acrobatics of a busy bee and their flight plans? What the community is all about. Who is doing what?

How many dimensions are there?

Consider ants crawling on a tabletop. In their daily experience, they can explore only 2 dimensions, those of the table surface. They may see a bee up flying, or occasionally landing on the table top, but that 3rd dimension is something they can only see or imagine, not experience. Perhaps we are in an analogous situation. Instead of a tabletop, we live in a 3-dimensional space called 3-brane (a name generalizing 2-brane, i.e., membrane). For some reason, we (i.e., atoms, molecules, photons etc.) are stuck in this 3-brane, even though there are 6 additional dimensions out there. Gravity, like the bee, can go everywhere. We call this the brane world, a rather natural phenomenon in superstring theory. At the moment, physicists are working hard to understand this scenario better and to find ways to experimentally test this idea.


The Bee people had graduated from the world of the ant people, jsut by their evolutionary timeline. They were "much more visionary" then the ant people. Because they could leave their three dimensional world of the table top, and pop into ant world's frame of reference. Ant people were never the wiser. Just that, Bee people existed.

Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.

See Wolf-Rayet star

Brane theory development needed a boost from the Bee people. Not only now do we understand the "dynamical thinking that goes with the Bee's flight patterns," we are now thinking, hey, "can these things apply" to the current solutions the humanistic intelligences persevere to unfold in their space travels?

Not just "our waist lines" as some might think in regards to "lensing" and the circles we apply in "computerize efforts." The range of territory of the Bee's community is well considered?

Sunday, March 11, 2007

Polar Flips

Sometimes it is necessary to see the deep impact a thought could have as we try to understand the implications of a "sphere dropped in a viscously liquid" that we might find another correlation in how we see the photon affected in the gravitational field. Can we grasped the feeling illicitated to say we have some what of a deep impact in remembering to think the strange world of fluids could entertain us?

Stokes' law

In 1851, George Gabriel Stokes derived an expression for the frictional force exerted on spherical objects with very small Reynolds numbers (e.g., very small particles) in a continuous viscous fluid by solving the small fluid-mass limit of the generally unsolvable Navier-Stokes equations:



where:

is the frictional force,
r is the Stokes radius of the particle,
η is the fluid viscosity, and
is the particle's speed.

If the particles are falling in the viscous fluid by their own weight, then a terminal velocity, also known as the settling velocity, is reached when this frictional force combined with the buoyant force exactly balance the gravitational force. The resulting settling velocity is given by:



where:

Vs is the particles' settling velocity (cm/sec) (vertically downwards if ρp > ρf, upwards if ρp < ρf),
r is the Stokes radius of the particle (cm),
g is the standard gravity (cm/sec2),
ρp is the density of the particles (g/cm3),
ρf is the density of the fluid (g/cm3), and
η is the fluid viscosity (dyne sec/cm2).


Why are Planets Round?

Q9:
Would these fluids act differently on the Moon and at (on) different gravities


I was loosing the train of thought within this post, and then the thought occurred me.

Why are planets round. This is a "general question" which leads to how we see the formation of the planets?

"isostatic adjustment"

Start there. We also know what a "sphere of water" looks like in space?

While the sphere was being thought of in regards to Stokes's Theorem, I was also thinking of the earth in relation to how we see gravity in regards to the earth already formed. The vicissitude, in which the earth exists within the cosmos. The moon.

The rotating superfluid gas of fermions is pierced with the vortices, which are like mini-tornadoes. Image / Andre Schirotzek, MIT

Bose-Einstein condensation of pairs of fermions that were bound together loosely as molecules was observed in November 2003 by independent teams at the University of Colorado at Boulder, the University of Innsbruck in Austria and at MIT. However, observing Bose-Einstein condensation is not the same as observing superfluidity. Further studies were done by these groups and at the Ecole Normale Superieure in Paris, Duke University and Rice University, but evidence for superfluidity was ambiguous or indirect.

The superfluid Fermi gas created at MIT can also serve as an easily controllable model system to study properties of much denser forms of fermionic matter such as solid superconductors, neutron stars or the quark-gluon plasma that existed in the early universe.


There is a special class of fluids that are called superfluids. Superfluids have the property that they can flow through narrow channels without viscosity. However, more fundamental than the absence of dissipation is the behavior of superfluids under rotation. In contrast to the example of a glass of water above, the rotation in superfluids is always inhomogeneous (figure). The fluid circulates around quantized vortex lines. The vortex lines are shown as yellow in the figure, and the circulating flow around them is indicated by arrows. There is no vorticity outside of the lines because the velocity near each line is larger than further away. (In mathematical terms curl v = 0, where v(r) is the velocity field.)

See here for more on Attributes of Superfluids

It is very possible that the information is inundating my thinking here yet without considering the context of the super fluid what requirements would fit the idea that earth is relevant when it comes to the molten core? Or how you see the magnetic field shifting in relation to the poles?

Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a higher viscosity. All real fluids (except superfluids) have some resistance to shear stress, but a fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid (Symon 1971).


I am quickly posting this and will have more to add. I wanted to speak directly to the idea of the super fluid. How the "irrotational value of the perfect fluid as a whole," could have it's leakages to the surface of the earth, as small vortices created.



This computer simulation shows the Earth's interior as its magnetic field reverses, perhaps because of changes in the flow of molten iron in the core. Deep inside the Earth, the magnetic field arises as the fluid core oozes with hot currents of molten iron and this mechanical energy gets converted into electromagnetism. It is known as the geodynamo. In a car's generator, the same principle turns mechanical energy into electricity.

No one knows precisely why the field periodically reverses, but scientists say the responsibility probably lies with changes in the turbulent flows of molten iron, which they envision as similar to the churning gases that make up the clouds of Jupiter.

In theory, a reversal could have major effects because over the ages many aspects of nature and society have come to rely on the field's steadiness.




Quasar posted a comment there that immediately made me think what the topic could mean in relation to the post he was commenting on. I thought of the earth's core as the subject was related, and thought how nice it would be to have such a "cylindrical channel that goes from pole to pole?"

Well the viscosity of the fluid as it traverses this cylinder would give some nature to the charge as it passes through? I do not think it could be that simple, if we thought the iron molten as the viscosity had a direct relation to what we know of our magnetic field? We know the earth core is not so cylindrical, that we could the attribute of the superfluid in this case while looking at the iron molten lava

So is it the iron in particular that gives us our strength based on it's fluid's nature?

These changes in Earth’s magnetic fields from 1980 to 2000 may be harbingers of a shift in the magnetic poles

Saturday, March 10, 2007

Relativistic Fluid Dynamics

The Navier-Stokes equations


A bubble is a minimal-energy surface
The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, are a set of equations that describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the product of changes in pressure and dissipative viscous forces (similar to friction) acting inside the fluid. These viscous forces originate in molecular interactions and dictate how viscous a fluid is. Thus, the Navier-Stokes equations are a dynamical statement of the balance of forces acting at any given region of the fluid.




In educating myself I learnt to trust my intuition when it comes to defining the basis of "new physics" that was to emerge. As well as, the new particle manifestation that would arise from "specific points" on interaction. What was suppose to be our starting point. This is really difficult for me to put into words, yet, if you knew that there was a "change over/cross over point" and how was this defined? It seemed to me, we had to have a place that would do this.

A more fundamental property than the disappearance of viscosity becomes visible if superfluid is placed in a rotating container. Instead of rotating uniformly with the container, the rotating state consists of quantized vortices. That is, when the container is rotated at speed below the first critical velocity (related to the quantum numbers for the element in question) the liquid remains perfectly stationary. Once the first critical velocity is reached, the superfluid will very quickly begin spinning at the critical speed. The speed is quantized - i.e. it can only spin at certain speeds.


"Nothing" is difficult to talk about, and "empty space" is not really empty. So to think "nothing" is a very hard one for me to grasp. If one thinks about what "sprang into being" I of course had to find this "place of traversing" from "one state of being" to another. What things help us to define the nature of that point?



Example of the viscosity of milk and water. Liquids with higher viscosities will not make such a splash.

Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is commonly perceived as "thickness", or resistance to flow. Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a higher viscosity. All real fluids (except superfluids) have some resistance to shear stress, but a fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid (Symon 1971).


I used the question mark not to befuddle those that read here or sanction any post to some idea about what the title following with a question mark, is worth so many points on the "flowery scale."

On the other hand, gravity in the form of curved space would permeate the whole bulk of the higher dimensional spacetime …. Stephen Hawking1


I shall have to define "flowery scale" sometime, but I would rather not give any credit to those who hold a position in science who have categorize people according to that same point system. Oh and please, do not consider the flowers less then what I hold as of high value in these "maturations" to be thought less then either.



While we had been witness to the collider experiments we were also quite aware that that such events had to be taking place with earth, from event sources released in space.

Relativistic Fluid Dynamics: Physics for Many Different Scales-Nils Andersson

In writing this review, we have tried to discuss the different building blocks that are needed if one wants to construct a relativistic theory for fluids. Although there are numerous alternatives, we opted to base our discussion of the fluid equations of motion on the variational approach pioneered by Taub [108] and in recent years developed considerably by Carter [17, 19, 21]. This is an appealing strategy because it leads to a natural formulation for multi-fluid problems. Having developed the variational framework, we discussed applications. Here we had to decide what to include and what to leave out. Our decisions were not based on any particular logic, we simply included topics that were either familiar to us, or interested us at the time. That may seem a little peculiar, but one should keep in mind that this is a “living” review. Our intention is to add further applications when the article is updated. On the formal side, we could consider how one accounts for elastic media and magnetic fields, as well as technical issues concerning relativistic vortices (and cosmic strings). On the application side, we may discuss many issues for astrophysical fluid flows (like supernova core collapse, jets, gamma-ray bursts, and cosmology).

In updating this review we will obviously also correct the mistakes that are sure to be found by helpful colleagues. We look forward to receiving any comments on this review. After all, fluids describe physics at many different scales and we clearly have a lot of physics to learn. The only thing that is certain is that we will enjoy the learning process!


Spacetime Curvatures

Flat space time? The thought there are strong gravitational forces at work and where are these located? Can there "be" amidst this strong curvature, the idea that a super fluid born, would have a place where a state of inertia could exist? I thought quickly of what happens when the blackhole collapses and what could come of it?

Of course this concept of inertia is strong in my mind but would need better clarifications as I am relaying it here in this circumstance.

But looking for these locations in Lagrangian views of the Sun Earth relation, it seemed viable to me that such a state could have gone from a very strong gravitational inclination( our suns, increase temperatures of the collapsing blackhole) to one that is "very free" and "not flat" but would allow information both ways(from before to now) to be traversed, as if in a jet or cylinder. So that the space around it would be expression not only the earlier constituents of the universe before this translation but manifest into the new physics with which would motive this universe, new particle manifestation, from what did not exist before.

1The Universe in a Nutshell, by Stephen Hawking. Bantam Books, ISBN 0-553-80202-X-Chapter 7, Page 181