Pages

Showing posts with label M Theory. Show all posts
Showing posts with label M Theory. Show all posts

Wednesday, February 29, 2012

Something, we may not know about the world?

See: Music of the Quantum You combine theoretical positions with concrete ideas?

If one has never encountered an anomaly in nature and thought okay this happened but with no scientific qualification what so ever then indeed it is not a measurable quality about dealing with reality. So only you know it happened. Of course, then, you ask yourself, what weight do you apply to that unless you can reproduce it, or, have the witnesses to back it up? Many years have gone by now.

So it spurs one to investigate some things about nature that as yet you know it happened are only thoughts which may belong to an area that is highly theoretical. A way to make sense of it or grasp the significance of what is not normal. Defines laws of?

So, I am trying to say what may be possible and at the same time ask why nature did not take that course, or, why we are not aware of the anomaly as being "a possible" now?

I know at some point I will have to say that because this is not a measurable process I have to ignore it until I can explain it or reproduce it? Just go on with my life as an unexplainable event. But in the mean time, one can learn many the things because of it?

Is this what you mean? This response, was only possible by you asking the right question?

*** 
 
Edward Witten Edward Witten's Homepage

One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.

Now I write this link and quote above because it set my own mind in motion, from that point. I began looking at the experiments and trying to derive something that was consistent in that process that would lead into that same logical conclusion that we are "seeing" and "not seeing" what happens.

What I have learn by association is that sometimes the spring board to move forward can be raised by others who question and point out things about nature.  How in being a scientist how one might look at things. How to be responsible about dealing with the world of observable things as well as interject about how theoretical explanations may provide for some foundation of how to explain "the possibilities" in nature? But without phenomenology this is really only an abstract thing. Some would just call it "a math" without  a reality foundation.So would you say then they are lost in  an abstract world?

Even here as a layman I am assuming that concepts them self are really covers for abstract things. One assumes there is math at it's basis and that all life without this approach is the foundation toward the phenomenological approach? You look for signs of the anomaly in nature and experiment.

Tuesday, May 27, 2008

Presenting a New Theoretical Position

All our dreams can come true, if we have the courage to pursue them.
Walt Disney


Here's the thing that I would caution such a quote, that any work can produce results, but, if we leave life unattended, the future is already written. The artist in you is very capable, and if you thought this aspect of yourself could msilead you, think twice, for the story telling can produce wonderful results and in such abstraction, it draws a conclusion for you.

What enters this room of the mind came from outside the box, and what constitutes this frame of reference is a room you will create. This creation is a subtle part of identification when you assess yourself and are given the warnings as to what shall become in the possibilities if not adjusted or taken care of. This pre-ordination does not imply you are without freewill, but on the contrary, are part and parcel of the greater wholeness defined in the universe. Defined within context of the understanding of ones own capability.

This has to be introduced in our assessment as to the nature of this universe.

JONATHAN SAUNDERS FOR TIMEEdward Witten:The World In A String-Time Magazine

Witten once called string theory "a bit of 21st century physics that somehow dropped into the 20th century." If so, Witten clearly has the 21st century mind to handle it.


There is no doubt, an historical significance to the topic under the heading of theoretics, and what calculable information retention would then lead you beyond the borders of reason, to know it is an attempt to go farther then we had ever gone before. How many combinations of the maths and you soon learn of the complexity of the situation.

But remember now, how "a thinking process" had been moved from the 21st Century.:)

The Decomposable limits of the Definition Conceptually Introduced.

While such reference to the subjective analysis of the current ministrations given by Sean Carroll on the article in the current Scientific Magazine, on the current state of the universe, it is with such presentation that I also included "the subjective side of my own nature," regardless of the warning about doing the physics first, and have one lead to such conclusions. It seems a difficult way in which to send the mind into the future, and while there, bring back the current state of the universe for a proper view of it's own continued existence.

Do you remember the theoretics of the 21 Century? So we now see that I include a facet of our mind that takes a leap, and while in it's most reflective state, while it rests, all that information manifests in a new possibility? From whence this come, and from which "directional face of the box" in it six dimensional rotational possibility, and we are indeed now looking from inside the box possibility? But how is it any new information can enter, if we had but closed all doors, to think like a "Close minded Wotian experience" will reveal of itself?:)Order of chapters, that exist as a fundamental indexed site for those who think in the box, and those who think outside of it?

Well you can now see where such introductions hold such a position for a mind like mine to consistently ever better the views for such abstraction that they be given to a new valley for consideration, that while there are such views of topos theory introduced, they now have become an aspect of the universe, not just the many possibilities, but one aspect for the consideration abstractly given such a state of existence. Who knew right?

Lee Smolin had all but said it was dead, and so too, even Witten himself convinced that such a landscape not worthy of such consideration? The work continues at least from my perspective, and now, some of the junior minds in this respect, and to those who had respect none given, know there is a little more to the story then what is the subjective journeys of a dreamer.

The false vacuum. The Hill. The Valley. Our Universe. Totally dissociatively words for the lay person to be introduced too, and together, sparked the neuron firing to include a "new thought process" about what exists beyond the 3+1 we'd given to our locations in time.

Wednesday, October 24, 2007

Euclidean Geometry and the Shadows

Just as some prisoners may escape out into the sun, so may some people amass knowledge and ascend into the light of true reality.The Holographic Principle and M-theory


I am always interested in "the flavour history" gives as we look back in time. If one always looked to the past as they looked at the cosmos what will become of the future? This has be stereotypically been instilled in our humanities thinking. That there is a brighter light that shines and all it's shadows cast are of some "truer reality" then the one that is now.

LIC(Long Island City) Gnomon Header above.

Of course it would not be without understanding certain things about "Plato's character" that I should show how we can deposit "these historical packets of energy" in that history. That it is deeply entrenched in "current sociological thinking" as we make our way through the days of our existence. A kind of "collective unconscious."



As archiac as this "method of measure" may seem, it has captured our fascination in more ways then one.

Plato's cave?

You tend to get this consistency of "historical thought" once one sees the connection?:)Euclid

How could one not perceive geometry at work after seeing what the sun can do in regards to these calendars?

One could of course propose the Egyptian new year, where the dead are placed, in relation to the pyramid, and the design of that history according to the clock, but then ,it may be in contradiction to what is current.

Even more ancient, the Medicine Wheels.




So looking at the blog entry of Stefan of Backreaction, and "Bee's mathematical universe," I would say these are "deeply connected with each other" that I would have to indeed say something.

I see Bee beat me too it.

Q9:"People see all sorts of things when they look at the SUN and Solar Calendars"

Time and how one views the cosmos for sure.

Capturing the understanding of Hooft, Heisenberg and others, you see Stefan working the principals "outside of himself" with his environment. Inside the universe.

Like, how one can "view the cosmos" or how "dimensionality is reduced to the now."

The evidence of "the beginning" is not gone?

The shadows reveal this, and so it reveals the mathematics of this universe.

Or, how the matter of the diamond has it's structure implanted in the mapping of it's features?

Yet, "the mapping" is closer to the beginning, then, the matter is of itself. :)



I expound further in Shadow Dancing in the Light and "The Artist In Us All"

Sunday, April 22, 2007

String Theory Crib Sheet

http://seedmagazine.com/images/uploads/cribsheet9.pdf

My wife and I are in transient, so I am posting this from my oldest daughters home.

We head back to our home town and set up for living for the next month in new travel trailer we purchased. We will be placing this on the land while we construct the new home we will be building. It is better for security reasons with all the homes under construction that there be some presence.

The topic above in the crib sheet was taken from Seed Magazine, and was done with the help of Clifford Johnson.

Saturday, December 30, 2006

N category and the Hydrogen spectrum


Picture of the 1913 Bohr model of the atom showing the Balmer transition from n=3 to n=2. The electronic orbitals (shown as dashed black circles) are drawn to scale, with 1 inch = 1 Angstrom; note that the radius of the orbital increases quadratically with n. The electron is shown in blue, the nucleus in green, and the photon in red. The frequency ν of the photon can be determined from Planck's constant h and the change in energy ΔE between the two orbitals. For the 3-2 Balmer transition depicted here, the wavelength of the emitted photon is 656 nm.
In atomic physics, the Bohr model depicts the atom as a small, positively charged nucleus surrounded by electrons that travel in circular orbits around the nucleus — similar in structure to the solar system, but with electrostatic forces providing attraction, rather than gravity.

Introduced by Niels Bohr in 1913, the model's key success was in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen; while the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced.

The Bohr model is a primitive model of the hydrogen atom. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics, and thus may be considered to be an obsolete scientific theory. However, because of its simplicity, and its correct results for selected systems (see below for application), the Bohr model is still commonly taught to introduce students to quantum mechanics.


For one to picture events in the cosmos, it is important that the spectral understanding of the events as they reveal themselves. So you look at these beautiful pictures and information taken from them allow us to see the elemental considerations of let's say the blue giants demise. What was that blue giant made up of in term sof it's elemental structure

The quantum leaps are explained on the basis of Bohr's theory of atomic structure. From the Lyman series to the Brackett series, it can be seen that the energy applied forces the hydrogen electrons to a higher energy level by a quantum leap. They remain at this level very briefly and, after about 10-8s, they return to their initial or a lower level, emitting the excess energy in the form of photons (once again by a quantum leap).


Lyman series
Hydrogen atoms excited to luminescence emit characteristic spectra. On excitation, the electron of the hydrogen atom reaches a higher energy level. In this case, the electron is excited from the base state, with a principal quantum number of n = 1, to a level with a principal quantum number of n = 4. After an average dwell time of only about 10-8s, the electron returns to its initial state, releasing the excess energy in the form of a photon.
The various transitions result in characteristic spectral lines with frequencies which can be calculated by f=R( 1/n2 - 1/m2 ) R = Rydberg constant.
The lines of the Lyman series (n = 1) are located in the ultraviolet range of the spectrum. In this example, m can reach values of 2, 3 and 4 in succession.


Balmer series
Hydrogen atoms excited to luminescence emit characteristic spectra. On excitation, the electron of the hydrogen atom reaches a higher energy level. In this case, the electron is excited from the base state, with a principal quantum number of n = 1, to a level with a principal quantum number of n = 4. The Balmer series becomes visible if the electron first falls to an excited state with the principal quantum number of n = 2 before returning to its initial state.
The various transitions result in characteristic spectral lines with frequencies which can be calculated by f=R( 1/n2 - 1/m2 ) R = Rydberg constant.
The lines of the Balmer series (n = 2) are located in the visible range of the spectrum. In this example, m can reach values of 3, 4, 5, 6 and 7 in succession.


Paschen series
Hydrogen atoms excited to luminescence emit characteristic spectra. On excitation, the electron of the hydrogen atom reaches a higher energy level. In this case, the electron is excited from the base state, with a principal quantum number of n = 1, to a level with a principal quantum number of n = 7. The Paschen series becomes visible if the electron first falls to an excited state with the principal quantum number of n = 3 before returning to its initial state.
The various transitions result in characteristic spectral lines with frequencies which can be calculated by f=R( 1/n2 - 1/m2 ) R = Rydberg constant.
The lines of the Paschen series (n = 3) are located in the near infrared range of the spectrum. In this example, m can reach values of 4, 5, 6 and 7 in succession.


Brackett series
Hydrogen atoms excited to luminescence emit characteristic spectra. On excitation, the electron of the hydrogen atom reaches a higher energy level. In this case, the electron is excited from the base state, with a principal quantum number of n = 1, to a level with a principal quantum number of n = 8. The Brackett series becomes visible if the electron first falls to an excited state with the principal quantum number of n = 4 before returning to its initial state.
The lines of the Brackett series (n = 4) are located in the infrared range of the spectrum. In this example, m can reach values of 5, 6, 7 and 8 in succession.

Tuesday, December 19, 2006

Cosmic ray spallation


As this NASA chart indicates, 70 percent or more of the universe consists of dark energy, about which we know next to nothing
Other explanations of dark energy, called "quintessence," originate from theoretical high-energy physics. In addition to baryons, photons, neutrinos, and cold dark matter, quintessence posits a fifth kind of matter (hence the name), a sort of universe-filling fluid that acts like it has negative gravitational mass. The new constraints on cosmological parameters imposed by the HST supernova data, however, strongly discourage at least the simplest models of quintessence.


Of course my mind is thinking about the cosmic triangle of an event in the cosmos. So I am wondering what is causing the "negative pressure" as "dark energy," and why this has caused the universe to speed up.


SNAP-Supernova / Acceleration Probe-Studying the Dark Energy of the Universe
The discovery by the Supernova Cosmology Project (SCP) and the High-Z Supernova team that the expansion of the universe is accelerating poses an exciting mystery — for if the universe were governed by gravitational attraction, its rate of expansion would be slowing. Acceleration requires a strange “dark energy’ opposing this gravity. Is this Einstein’s cosmological constant, or more exotic new physics? Whatever the explanation, it will lead to new discoveries in astrophysics, particle physics, and gravitation.


By defining the context of particle collisions it was evident that such a place where such a fluid could have dominated by such energy in stars, are always interesting as to what is ejected from those same stars. What do those stars provide for the expression of this universe while we are cognoscente of the "arrow of time" explanation.


This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion.


So of course these thoughts are shared by the perspective of educators to help us along. But if one did not understand the nature of the physical attributes of superfluids, how would one know to think of the relativistic conditions that high energy provides for us?


NASA/WMAP Scientific Team: Expanding Universe



So recognizing where these conditions are evident would be one way in which we might think about what is causing a negative pressure in the cosmos.

Given the assumption that the matter in the universe is homogeneous and isotropic (The Cosmological Principle) it can be shown that the corresponding distortion of space-time (due to the gravitational effects of this matter) can only have one of three forms, as shown schematically in the picture at left. It can be "positively" curved like the surface of a ball and finite in extent; it can be "negatively" curved like a saddle and infinite in extent; or it can be "flat" and infinite in extent - our "ordinary" conception of space. A key limitation of the picture shown here is that we can only portray the curvature of a 2-dimensional plane of an actual 3-dimensional space! Note that in a closed universe you could start a journey off in one direction and, if allowed enough time, ultimately return to your starting point; in an infinite universe, you would never return.


Of course it is difficult for me to understand this process, but I am certainly trying. If one had found that in the relativistic conditions of high energy scenarios a "similarity to a flattening out" associated with an accelerating universe what would this say about information travelling from the "origins of our universe" quite freely. How would this effect dark energy?

In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame energy density ρ and isotropic pressure p.

Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction.

In tensor notation, the energy-momentum tensor of a perfect fluid can be written in the form

[tex] T^{\mu\nu}=(\rho+p)\, U^\mu U^\nu + P\, \eta^{\mu\nu}\,[/tex]



where U is the velocity vector field of the fluid and where ημν is the metric tensor of Minkowski spacetime.

Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory to be applied to fluids. In particular, this enables us to quantize perfect fluid models. This Lagrangian formulation can be generalized, but unfortunately, heat conduction and anisotropic stresses cannot be treated in these generalized formulations.

Perfect fluids are often used in general relativity to model idealized distributions of matter, such as in the interior of a star.


So events in the cosmos ejected the particles, what geometrical natures embued such actions, to have these particle out in space interacting with other forms of matter to create conditions that would seem conducive to me, for that negative pressure?

Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are energetic particles outside of Earth ranging from a stray electron to gamma rays. These cause spallation when a fast moving particle, usually a proton, part of a cosmic ray impacts matter, including other cosmic rays. The result of the collision is the expulsion of large members of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in our upper atmosphere due to the impact of cosmic rays.

Cosmic ray spallation produces some light elements such as lithium and boron. This process was discovered somewhat by accident during the 1970s. Models of big bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the big bang.

Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, and the excess deuterium in the universe could be explained by assuming the existence of non-baryonic dark matter. However, studies of spallation showed that it could generate lithium and boron. Isotopes of aluminum, beryllium, carbon(carbon-14), chlorine, iodine and neon, are also formed through cosmic ray spallation.



Talk about getting tongue tied, can you imagine, "these fluctuations can generate their own big bangs in tiny areas of the universe." Read on.


Photo credit: Lloyd DeGrane/University of Chicago News Office
Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

Thursday, December 14, 2006

Against Symmetry

The term “symmetry” derives from the Greek words sun (meaning ‘with’ or ‘together’) and metron (‘measure’), yielding summetria, and originally indicated a relation of commensurability (such is the meaning codified in Euclid's Elements for example). It quickly acquired a further, more general, meaning: that of a proportion relation, grounded on (integer) numbers, and with the function of harmonizing the different elements into a unitary whole. From the outset, then, symmetry was closely related to harmony, beauty, and unity, and this was to prove decisive for its role in theories of nature. In Plato's Timaeus, for example, the regular polyhedra are afforded a central place in the doctrine of natural elements for the proportions they contain and the beauty of their forms: fire has the form of the regular tetrahedron, earth the form of the cube, air the form of the regular octahedron, water the form of the regular icosahedron, while the regular dodecahedron is used for the form of the entire universe. The history of science provides another paradigmatic example of the use of these figures as basic ingredients in physical description: Kepler's 1596 Mysterium Cosmographicum presents a planetary architecture grounded on the five regular solids.





The basic difference that I see is the way in which Lee Smolin adopts his views of what science is in relation too, "Two traditions in the search for fundamental Physics."

It is strange indeed to see perfection of Lee Smolin's comparison and having a look further down we understand the opening basis of his philosophical thoughts in regards to the title "against symmetry?"

Some reviews on the "Trouble With Physics," by Lee Smolin

  • Seed Magazine, August 2006
  • Time magazine August 21, 2006
  • Discover Magazine, September 2006 &
  • Scientific American, September 2006
  • Wired September 2006:15 :
  • The Economist, Sept 14, 2006
  • The New York Times Book review, Sep 17, 2006 by Tom Siegfried
  • The Boston Globe, Sept 17, 2006
  • USA Today, Sept 19, 2006
  • The New York Sun, by Michael Shermer, Sept 27, 2006
  • The New Yorker,  by Jim Holt Sept 25,2006
  • The LA Times, by K C Cole, Oct 8, 2006
  • Nature,
  • by George Ellis (Nature 44, 482, 5 Oct. 2006)
  • San Fransisco Chronicle , by Keay Davidson, Oct 13, 2006
  • Dallas Morning News, by FRED BORTZ, Oct 15, 2006
  • Toronto Star, by PETER CALAMAI, Oct 15, 2006


  • But before I begin in that direction I wanted people to understand something that is held in the mind of the "condense matter theorist." In terms of the building blocks of nature. This is important basis of understanding, that any building block could emergent from anything, we had to identify where this symmetry existed, before it manifested in the "matter states of reality."

    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.


    So it is important to understand what is emergent and what exists in the "theory of everything" if it did not consider the context of symmetry? AS a layman trying to get underneath the thinking process of any book development, it is important to me.

    Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics dictates physics.


    The idea here then is to find super strings place within context of the evolving universe, in terms of, "the microseconds" and not the "first three minutes" of Steven Weinberg.

    So it is important to see the context with which this discussion is taking place, in terms of the high energy and from that state of existence to what entropically manifests into the universe now.

    Confronting A Position Adopted By Lee Smolin


    A sphere with three handles (and three holes), i.e., a genus-3 torus.

    This is only "one point of contention" that was being addressed at Clifford Johnson's Asymptotia.

    Jacques Distler :

    This is false. The proof of finiteness, to all orders, is in quite solid shape. Explicit formulæ are currently known only up to 3-loop order, and the methods used to write down those formulæ clearly don’t generalize beyond 3 loops.

    What’s certainly not clear (since you asked a very technical question, you will forgive me if my response is rather technical) is that, beyond 3 loops, the superstring measure over supermoduli space can be “pushed forward” to a measure over the moduli space of ordinary Riemann surfaces. It was a nontrivial (and, to many of us, somewhat surprising) result of d’Hoker and Phong that this does hold true at genus-2 and -3.


    There is no doubt that the "timeliness of statements" can further define, support or not, problems that are being discussed. I don't mind being deleted on the point of the post above, because our good scientist's are getting into the heat of things. I am glad Arun stepped up to the plate.

    Part of finally coming to some head on debate, was seeing how Peter Woit along with Lee Smolin were being challlenged for their views, while there had been this ground swell created against a model that was developed, like Loop quantum gravity was developed. One of the two traditions in search for the fundamental physics. Loop qunatum Gravity and String theory(must make sure there is the modification to M theory?) Shall this be included?


    Click on link Against symmetry (Paris, June 06)

    But as they are having this conversation, it is this openness that they have given of themselves that we learn of the intricacies of the basis of arguments, so the public is better informed as to what follows and what has to take place.


    Against symmetry (Paris, June 06)

    So while this issue is much more complex then just the exchange there, I have not forgotten what it is all about. Or why one may move from a certain position after they have summarize the views they had accumulated with regards to the subject of String/M theory as a model that has out lived it's usefulness, in terms of not providing a experimental frame work around it.

    Tuesday, November 28, 2006

    Breakthrough Propulsion Physics?


    Shuttle Main Engine Test Firing-1981-A remote camera captures a close-up view of a Space Shuttle Main Engine during a test firing at the John C. Stennis Space Center in Hancock County, Mississippi.
    Spacecraft propulsion is used to change the velocity of spacecraft and artificial satellites, or in short, to provide delta-v. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. Most spacecraft today are propelled by heating the reaction mass and allowing it to flow out the back of the vehicle. This sort of engine is called a rocket engine.


    While the topic here is about how travel is possible, it is the idea that "new physics" can some how propelled forward the mass in space to do the things of travel necessary.

    In addition, a variety of hypothetical propulsion techniques have been considered that would require entirely new principles of physics to realize. To date, such methods are highly speculative and include


    Within the definitions of the literature it is then possible to deduce what is required? So this saves me the time while speaking to the new physics, of having to explain the rudimentary understandings of how I can leaped forward. No less, the idea of the "thought experiment" that is put in front of us that we create the dialogue necessary, with or without impute, to advance one's thinking.


    Credit: NASA CD-98-76634 by Les Bossinas. Artist's depiction of a hypothetical Wormhole Induction Propelled Spacecraft, based loosely on the 1994 "warp drive" paper of Miguel Alcubierre.

    Introduction

    The term breakthrough propulsion refers to concepts like space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar travel practical.

    For a general explanation of the challenges and approaches of interstellar flight, please visit the companion website: Warp Drive: When? The Warp-When site is written for the general public and uses icons of science fiction to help convey such notions. This website, on the other hand, is intended for scientists and engineers.



    How is a Blackhole Determined?

    PLato:Remember the "closed loop process?"

    From the "blackhole horizon" what value would, "to e or not to e" speak too, if "one" was falling into the blackhole and "one" was out? Are they separated? What is our "state of the universe" then?


    A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole".



    IN the process of discovering the gravitational variances in space of "gravitational effects" how is it that a spaceship could become sensitive to the variations of that travel and slow down, if it did not have a way in which to calculate these fluctuations?

    There’s a place from which nothing escapes, not even light, where time and space literally come to end. It’s at this point, inside this fantastic riddle, that black holes exert their sway over the cosmos … and our imaginations.


    There’s a place from which nothing escapes, not even light? So I have to re-educate some people so that they understand the limtiations that have been applied to current thinking, by what is currently out there in terms of what we know about blackholes. So breaking from of those limitation on perspective is very important with what we know now. How we can determine a blackhole.

    So here to then is a wider perspective about lagrangain perspective of space that is needed in the understanding of travel in space. Implications of ways and means to determine the needed velocities of the space craft to move forward within context of determinations of gravitational influences.





    Special Lagrangian geometry in particular was seen to be related to another String Theory inspired phenomenon, "Mirror Symmetry". Strominger, Yau and Zaslow conjectured that mirror symmetry could be explained by studying moduli spaces arising from special Lagrangian geometry.
    Dr. Mark Haskins

    So while our imagination is being captured by this "gravitational concentration" in the cosmos what use to discern the nature of the "closed loop process" if we did not consider the "thought experiment" of Susskind as I have spoken to it in the last couple of posts?

    Hawking radiation owes its existence to the weirdness of the quantum world, in which pairs of virtual particles pop up out of empty space, annihilate each other and disappear. Around a black hole, virtual particles and anti-particles can be separated by the event horizon. Unable to annihilate, they become real. The properties of each pair are linked, or entangled. What happens to one affects the other, even if one is inside the black hole.


    The first order of business here is that we use methods based on the understanding of the "link of entanglement" around what is inside the blackhole as a measure? What that photon is telling us in relation to the gravitational considerations influencing the space craft? IN this way, "calibration technique" allows for variances in the determination of what we see in the perspective of the cosmos as a vital differential understanding of that pathways through space.

    IN "weak field understanding" we know the loop process is symmetric? Also, if gravity is combined to electromagnetism, what value the photon for determination if we had not understood this relation to gravitation effects in the cosmos? So this process then is understood in terms of developing the means to travel in space that was before not so easily determined(escape velocities for mass in space), but has now been shattered by moving beyond the paradigms of previous thought processes?

    This is the benefit of thinking "thought experiments" to progress any idea. Now what has been written here, is it right or wrong?

    The Propulsion System?


    AIRES Cosmic Ray Showers



    Also no where have I revealed the propulsion system need in order for the space craft to exceed the gravitational variances within the cosmos

    Gamma Ray production in particle creation?

    The Pierre Auger Observatory in Malargue, Argentina, is a multinational collaboration of physicists trying to detect powerful cosmic rays from outer space. The energy of the particles here is above 1019eV, or over a million times more powerful than the most energetic particles in any human-made accelerator. No-one knows where these rays come from.

    Such cosmic rays are very rare, hitting an area the size of a football field once every 10 000 years. This means you need an enormous 'net' to catch these mysterious ultra high energy particles. The Auger project will have, when completed, about 1600 detectors.


    Understanding the collision process within context of our own planet, and what information is received from other events within the cosmos allows us "to rebuild" what happens no less then what "LIGO operations" and it's gathering techniques, allows us from the complexity of the information to a thing of beauty?


    The H.E.S.S. telescope array represent a multi-year construction effort by an international team of more than 100 scientists and engineers


    So how shall we identify such sources if we had not considered the "light house effect?"


    Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87

    Wednesday, November 22, 2006

    Tunnelling in Faster then Light

    Underneath this speculation of mine is the geometrical inclination of the universe in expression. If it's "dynamical nature is revealed" what allows us to think of why this universe at this time and junction, should be flat(?) according to the time of this universe in expression?

    Omega=the actual density to the critical density

    If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?


    Positive energy density gives spacetime of the universe a positive curvature. A sphere? Negative curvature a region of spacetime that is negative and curved like a saddle? For time travel, and travel into the past, you need a universe that has a negative energy density.

    Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?



    A anti-particle can be considered as a particle moving back in time? Only massless particle can travel faster then light. Only faster then light massless particles can travel back in time? So of course, I am again thinking of the elephant process of Susskind and the closed loop process of the virtual particle/anti-particle. What comes out of it?

    That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.


    So the anti-particle falls into the blackhole? How is it that I resolve this?? You can consider the anti-particle as traveling back in time. The micro perspective of the blackhole allows time travel backwards.


    Getty Images
    Although a 1916 paper by Ludwig Flamm from the University of Vienna [4] is sometimes cited as giving the first hint of a wormhole, "you definitely need hindsight to detect it," says Matt Visser of Victoria University in Wellington, New Zealand. Einstein and Rosen were the first to take the idea seriously and to try to accomplish some physics with it, he adds. The original goal may have faded, but the Einstein-Rosen bridge still pops up occasionally as a handy solution to the pesky problem of intergalactic travel.


    There are two cases in which the thoughts about faster then light particles are created and this is the part where one tries to get it right so as not to confuse themselves and others.

    Wormholes?

    Plato:
    So "open doorways" and ideas of "tunneling" are always interesting in terms of how we might look at an area like GR in cosmology? Look for way in which such instances make them self known.

    Are they applicable to the very nature of quantum perceptions that such probabilities could have emerged through them? Held to "time travel scenarios" and grabbed the history of what had already preceded us in past tense, could have been brought again forward for inspection?


    Sure I am quoting myself here, just to show one of the options I am showing by example. The second of course is where I was leading too in previous posts.

    So I was thinking here in context of one example in terms of the containment of the "graviton in a can" is really letting loose of the information in the collision process, as much as we like this "boundary condition" it really is not so.

    Another deep quantum mystery for which physicists have no answer has to do with "tunneling" -- the bizarre ability of particles to sometimes penetrate impenetrable barriers. This effect is not only well demonstrated; it is the basis of tunnel diodes and similar devices vital to modern electronic systems.

    Tunneling is based on the fact that quantum theory is statistical in nature and deals with probabilities rather than specific predictions; there is no way to know in advance when a single radioactive atom will decay, for example.

    The probabilistic nature of quantum events means that if a stream of particles encounters an obstacle, most of the particles will be stopped in their tracks but a few, conveyed by probability alone, will magically appear on the other side of the barrier. The process is called "tunneling," although the word in itself explains nothing.

    Chiao's group at Berkeley, Dr. Aephraim M. Steinberg at the University of Toronto and others are investigating the strange properties of tunneling, which was one of the subjects explored last month by scientists attending the Nobel Symposium on quantum physics in Sweden.

    "We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunneling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

    "This is another great mystery of quantum mechanics."


    Of course I am looking for processes in physics that would actually demonstrate this principal of energy calculated at the very beginning of the collision process, now explained in the detector, minus the extra energy that had gone where?



    This is the basis for the "Graviton in a can" example of what happens in the one scenario.

    Plato:
    A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature


    Plasmas and Bose condensates

    So in essence the physics process that I am identifying is shown by understanding that the "graviton production" allows that energy to be transmitted outside the process of the LHC?

    This is the energy that can be calculated and left over from all the energy assumed in the very beginning of this collision process. Secondly, all energy used in this process would be in association with bulk perspective.

    This now takes me to the second process of "time travel" in the LHC process. The more I tried to figure this out the basis of thought here is that Cerenkov radiation in a vacuum still is slower then speed of light, yet within the medium of ice, this is a different story. So yes there are many corrections and insight here to consider again.

    The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


    So while sleeping last night the question arose in my mind as to the location of where the "higgs field" will be produced in the LHC experiment? Here also the the thoughts about the "cross over point" that would speak to the idea here of what reveals faster then light capabilities arising from the collision process?

    What are the main goals of the LHC?-
    The LHC will also help us to solve the mystery of antimatter. Matter and antimatter must have been produced in the same amounts at the time of the Big Bang. From what we have observed so far, our Universe is made of only matter. Why? The LHC could provide an answer.

    It was once thought that antimatter was a perfect 'reflection' of matter - that if you replaced matter with antimatter and looked at the result in a mirror, you would not be able to tell the difference. We now know that the reflection is imperfect, and this could have led to the matter-antimatter imbalance in our Universe.

    The strongest limits on the amount of antimatter in our Universe come from the analysis of the diffuse cosmic gamma-rays arriving on Earth and the density fluctuations of the cosmic background radiation. If one asumes that after the Big Bang, the Universe separated somehow into different domains where either matter or antimatter was dominant, then at the boundaries there should be annihilations, producing cosmic gamma rays. In both cases the limit proposed by current theories is practically equivalent to saying that there is no antimatter in our Universe.


    So we get the idea here in the collision process and from it the crossover point leaves a energy dissertation on what transpired from this condition and left the idea in my mind about the circumstances of what may have changed the the speed of the cosmos at varying times in the expansion process within our universe. So, this is where I was headed as I laid out the statement below.

    Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."


    So what is the jest of my thought here that I would go to great lengths here to speak about the ideas of what happens within the cosmos to change those varying times of expansion? It has to do with the Suns and the process within those suns that give the dark energy some value, in it's anti- gravity nature to align our selves and our thinking to the cosmological constant of Einstein. If we juggle the three ring circus we find that the curvature parameters can and do hold thoughts govern by the cosmological constant?

    It is thus equally important to identify this "physics process" that would allow such changes in the cosmos. So that we can understand the dynamical nature that the cosmos reveals to us can and does allow aspect of its galaxies within context of the universe to increase this expansive process while we question what drives such conditions.

    Saturday, November 18, 2006

    Result of Effective Changes in the Cosmos

    "There comes a time when the mind takes a higher plane of knowledge but can never prove how it got there. All great discoveries have involved such a leap. The important thing is not to stop questioning." Albert Einstein (1879- 1955)




    But the presence of an event horizon implies a finite Hawking temperature and the conditions for defining the S Matrix cannot be fulfilled. This lack of an S Matrix is a formal mathematical problem not only in string theory but also in particle theories.

    One recent attempt to address this problem invokes quantum geometry and a varying speed of light. This remains, as they say, an active area of research. But most experts doubt that anything so radical is required.


    What processes would allow you to see "faster then light entities" being shown as examples of that "cross over point?" That's part of the fun isn't it when you realize what some experiments are actually checking for? :)



    So yes of course, you might think about "Cerenkov radiation" and from this, what is happening in today's world, that allows us lay people, never having seen or understood, but may now do so?

    SNO
    The Sudbury Neutrino Observatory is a collaborative effort among physicists from Canada, the U.K., and the U.S. Using 1,000 tons of so-called heavy water and almost 10,000 photon detectors, they measure the flux, energy, and direction of solar neutrinos, which originate in the sun. SNO, located 6,800 feet underground in an active Ontario nickel mine, can also detect the other two types of neutrinos, muon neutrinos and tau neutrinos. In 2001, just two years after the observatory opened, physicists at SNO solved the 30-year-old mystery of the "missing solar neutrinos." They found that the answer lies not with the sun—where many physicists had suspected that solar neutrinos undergo changes—but with the journey they take from the core of the sun to the Earth.


    In the previous article I mention the "cross over point in LHC" and from this, the idea was born in mind, how the universe and the effectives rates of expansion could take place?



    While it is a long shot, I thought since of layman status, what could it hurt but to speculate and see what thoughts further arise from this. Like any model perspective adopted, allows new thinking to emerge, where previously, none existed for me. So one tends to try and go with the flow and see where it ends up. At least that's what I do and now, others do too?


    Blackhole Production in the Cosmos


    Increase, in high energy collisions taking place, allows speed up of inflation?



    So here is the jest of what allowed me to say that the effective rates of exchange in the cosmos had to have the physics related to show the reasons why the effective speed up of inflation has been detected.


    Adapted from Dienes et al., Nuclear Physics B
    Some theorists envision the universe as multidimensional space-time embedding a membranous entity, called a brane, also of multiple dimensions. Diagram depicts familiar 3-dimensional space (time not shown) as a vertical line. At every point along line, one extra dimension curls around with a radius (r) of no more that about 10–19 meter. Perpendicular to every point of the brane extends the bulk, another extra dimension.


    Also I will give the idea of "photo/graviton association" and how "graviton in a can" allows perspective about the "effective field variations" that "may be" predicted in the vacuum as it produces new physics to emerge on the other side? Quite a mouthful I know.


    The graviton is the quantum force carrier of gravity. In conventional quantum field theory, graviton processes with loops do not make sense because of incurable divergencies.


    The idea then here is to understand the graviton production in particle collisions here produce some interesting "phenomena" as we see faster then light entities move beyond the confines of that "graviton in a can." So you get the jest then, that even if the boundary conditions are experimentally being tested here, the production of gravitons is very high.

    So what allows faster then light entities to move beyond these confines if you did not understand the connection to the "perfect fluid" and the anomalistic nature this perfect fluid has for allowing such traversing beyond the standard model?

    That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.

    Thursday, November 09, 2006

    The Cosmic Connection to Climate


    Cars and industrial activity contribute to the 7 gigatons of carbon dioxide released each year into the atmosphere.Credits: EuroNews

    Some thoughts about this were being contemplates as I was slowly awaking this morning. I was actually thinking of one more image about seeing Gr being measured by how Grace is looking at and being used to look at the planet in other ways as well.



    I'll add that later.

    Variation of Cosmic ray flux and Global cloud coverage by Henri Svensmark and Eigil Friis-Christensen, 26 NOvember 1996

    Some historical perspective about eight years ago below here raises question about what this cosmic connection might mean from a wider perspective.

    CERN plans global-warming experiment(1998)

    A controversial theory proposing that cosmic rays are responsible for global warming is to be put to the test at CERN, the European laboratory for particle physics. Put forward two years ago by two Danish scientists, Henrik Svensmark and Eigil Friis-Christensen, the theory suggests that it is changes in the Sun's magnetic field, and not the emission of greenhouse gases, that has led to recent rises in global temperatures.

    Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.


    Looking at this places some extra thinking about what could be taking place in the cosmos, effectively creating the circumstance "also" for changes with regard to earth's climate?



    At what point would such intensity of the event in the cosmos cause the larger scenario to be played out, that it also, may have been a contributing factor to what we think about global warming here?



    See this link here for further thoughts about the increase in the "lighthouse effect" and how such intensities may be considered in light of the following thoughts being demonstrated here.


    This is not to dissuade people from thinking about the current considerations that are man made but raised questions in my mind about the consequences of other factors which may or may not be contributing to global climate changes.

    A missing link in climate theory

    The Danish National Space Center (DNSC) is a research center under the Ministry of Science, Technology and Innovation. The research activities include astrophysics, solar system physics, geodesy and space technology.
    The experimental results lend strong empirical support to the theory proposed a decade ago by Henrik Svensmark and Eigil Friis-Christensen that cosmic rays influence Earth’s climate through their effect on cloud formation. The original theory rested on data showing a strong correlation between variation in the intensity of cosmic radiation penetrating the atmosphere and the amount of low-altitude clouds. Cloud cover increases when the intensity of cosmic rays grows and decreases when the intensity declines.

    It is known that low-altitude clouds have an overall cooling effect on the Earth’s surface. Hence, variations in cloud cover caused by cosmic rays can change the surface temperature. The existence of such a cosmic connection to Earth’s climate might thus help to explain past and present variations in Earth’s climate.

    Interestingly, during the 20th Century, the Sun’s magnetic field which shields Earth from cosmic rays more than doubled, thereby reducing the average influx of cosmic rays. The resulting reduction in cloudiness, especially of low-altitude clouds, may be a significant factor in the global warming Earth has undergone during the last century. However, until now, there has been no experimental evidence of how the causal mechanism linking cosmic rays and cloud formation may work.

    ‘Many climate scientists have considered the linkages from cosmic rays to clouds to climate as unproven,’ comments Eigil Friis-Christensen, who is now Director of the Danish National Space Center. ‘Some said there was no conceivable way in which cosmic rays could influence cloud cover. The SKY experiment now shows how they do so, and should help to put the cosmic-ray connection firmly onto the agenda of international climate research.’


    Friday, November 03, 2006

    Back to the Beginning of Time



    While some of us who had been engaged in a little prehistory examination of earliest QGP states as glast determination of high energy photons, the question, "to Be or not to be," how could we not ask what Professor Susskind offered up for examination under the title, "the elephant and the event horizon?"

    What happens when you throw an elephant into a black hole? It sounds like a bad joke, but it's a question that has been weighing heavily on Leonard Susskind's mind. Susskind, a physicist at Stanford University in California, has been trying to save that elephant for decades. He has finally found a way to do it, but the consequences shake the foundations of what we thought we knew about space and time. If his calculations are correct, the elephant must be in more than one place at the same time.


    I think there is still this far reaching philosophical question about what really started time? If "nothing" existed then how could we assume anything could arise from it?

    While empirically Aristotle has lead the thinking, you know how I think don’t you:) Do you see me stand apart from Aristotle?




    So I resolve this question in my own mind, even if I do refer to Gabriele Veneziano and his introduction of what began as string theory.

    How could I resolve "anything" that has been taken down to the very first microseconds, while recognizing the value of anything "underneath the guise of building blocks of matter," and have said, "that this is the theory of everything?"

    It only helped us to the point of the singularity, but it is much different then a complete death. The whole time reductionistic thinking has dominated the move back in history, there were other things going on, that us simple lay people were not aware of. Maybe for some scientists too?:)


    Colliding galaxies, NGC 4676, known as "The Mice" (credit: Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA )
    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope, scheduled for launch in 2013. JWST will find the first galaxies that formed in the early Universe, connecting the Big Bang to our own Milky Way Galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range.

    JWST will have a large mirror, 6.5 meters (21.3 feet) in diameter and a sunshield the size of a tennis court. Both the mirror and sunshade won't fit onto the rocket fully open, so both will fold up and open only once JWST is in outer space. JWST will reside in an orbit about 1.5 million km (1 million miles) from the Earth.

    JWST Science

    The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of The Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems.


    So again, we are being lead by science here to look ahead to what plans for the future may have influenced, or caused the decsisons they did, on another trip to refurbish the Hubble Space Telescope?

    The Dark Ages of the UniverseBy Abraham Loeb

    What makes modern cosmology an empirical science is that we are literally able to peer into the past. When you look at your image reflected off a mirror one meter away, you see the way you looked six nanoseconds ago--the light's travel time to the mirror and back. Similarly, cosmologists do not need to guess how the universe evolved; we can watch its history through telescopes. Because the universe appears to be statistically identical in every direction, what we see billions of light-years away is probably a fair representation of what our own patch of space looked like billions of years ago.


    So then I am at a loss to explain that what happened billions of years ago near the beginning of this universe, could have ever been created in this universe now? Some body may say to you, "that the beginning of time and the distance of the beginning of the universe to now, has no correlation?"

    If the circumstance are to be created in our colliders, then what said that mass determinations will ever arise from our research into the HiGG's, is not relevant, to what can be created in this space and time now?

    Remember, everywhere you look in the cosmos this possibility exists. The WMAP is indictive of what I am saying.

    So you say, the beginning of the universe and "the time created" to produce the particles of new physics, has no correlation into how this universe came into being?

    Perhaps you may like to read Stephen Hawkings perspective on the beginning of time?

    The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.

    Friday, October 20, 2006

    Doppelgänger Favors Oscillate

    "Observations always involve theory."Edwin Hubble


    Of course I relate the "Ghost Particle to Pauli" here so that people would recognize the faint discerning image in "mirror world," as some calculation that paved the way for some future spoken from Feynman's point of view, to John Bahcall. Imagine what began as a theory/concept/idea, could have brought on this whole subject of neutrinos.

    Of course here I could relate the story of "Alice in Wonderland" and Ivars Peterson may have some thoguhts on this as well. About fantasy, and what a good mathematcian should have in her/his arsenal for future prospects which will manifest as Nikolai Lobachevsky relates in quote below.

    So the idea here is of course that we are looking at the neutrinos as a mechanism responsible for the matter/anti-matter asymmetry. But hold this thought while we continue through here at the unimaginable, to the manageable in testing theory.

    There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.Nikolai Lobachevsky


    I couldn't help but think of the new TV series "Heroes" that is now playing. Of course there are intriguing ideas here about time travel, regeneration, and what do you know, the "Doppelgänger," of mirror world.

    Niki Sanders, a 33-year-old Las Vegas showgirl who can do incredible things with mirrors


    Well under that pretense the idea is one of the dark side being show in mirror world, while the unconsicous stae of mind is somehow dropped in place of it's dark resurgence? How do you ever calculate something like that? Imagine, "Angels and Demons" as some sphere related by Escher as the revolving sphere of understanding?


    All M.C. Escher works (c) 2001 Cordon Art BV - Baarn - the Netherlands. All rights reserved. www.mcescher.com


    A doppelgänger (pronunciation (help·info)) is the ghostly double of a living person. The word doppelgänger is a loanword from German, written there (as any noun) with an initial capital letter Doppelgänger, composed from doppel, meaning "double", and gänger, as "walker". In English, the word is conventionally not capitalized, and it is also common to drop the German diacritic umlaut on the letter "a" and write "doppelganger", although the correct spelling without umlaut would be "doppelgaenger".


    Right Handed Neutrino

    Anyway there is this idea/concept/theory that refers to the combining gravity with the other forces. They call this supersymmetry. This requires that each particle to have a supermassive shadow particle?

    Like many detectors, this experiment at the Fermi National Accelerator in Batavia, Illinois investigates the oscillation of neutrinos from one type to another. Since 2003, it has observed neutrinos created from protons in Fermilab's particle booster, part of the system that the lab normally employs to accelerate protons to higher energies for other experiments. MiniBooNE is a 40-foot-in-diameter spherical steel tank filled with 800 tons of mineral oil and lined with 1,280 phototubes (some of which are being adjusted in this image) that produce a flash of light when charged particles travel through them. Analyses of these light flashes are already providing tantalizing information


    So if the assumption is that the "sterile neutrino" could roam in higher dimensions being undetected by us, and make it's presence felt through the influence of gravity, what does this say about grvaity currently measure at this time in the universe?

    Might it mean that when only measuring high energy collidial events, that we have within the presence of the cosmo, also the the effect of weak grvaitation measures allotted to the sterile neutino, then what does this say to us about the extension of the standard model as new physics?

    Current evidence shows that neutrinos do oscillate, which indicates that neutrinos do have mass. The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos. Therefore, there might be a fourth neutrino, which is currently being called a "sterile" neutrino, which interacts more weakly than the other three neutrinos.

    BooNE will determine the oscillation parameters and possibly yield further information about the mass of a neutrino


    See:
  • The Right Spin for a Neutrino Superfluid