Pages

Showing posts with label Helioseismology. Show all posts
Showing posts with label Helioseismology. Show all posts

Tuesday, April 15, 2014

Multiverse or Universe? - Andre Linde (SETI Talks)



Published on Jan 1, 2013
SETI Talks archive: http://seti.org/talks
Cosmological observations show that the universe is very uniform on the maximally large scale accessible to our telescopes, and the same laws of physics operate in all of its parts that we can see now. The best theoretical explanation of the uniformity of our world was provided by inflationary theory, which was proposed 30 years ago.
See:  Multiverse or Universe? - Andre Linde (SETI Talks)

***  

See Also:

Thursday, April 10, 2014

The Map of B Mode Imprints


Figure 3: Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < ℓ < 120. Right: The equivalent maps for the first of the lensed-ΛCDM+noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines display the equivalent magnitude and orientation of the linear polarization. Note that excess B-mode is detected over lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at ℓ ≈ 70). (Also note that the E-mode and B-mode maps use different color/length scales.)

BICEP2 2014 Release Figures from Papers

 You know the distinctions on how one might see information as purported to exist as gravitational waves  of course held my perspective. Like others,  is this a way in which BICEP has illustrated something of the every nature of space-time, as to my thoughts then, when it really was only about seeing a footprint in the WMAP.


Gravitational waves open up a new window on the universe that will allow us to probe events for which no electromagnetic signature exists. In the next few years, the ground-based interferometers GEO-600, LIGO, VIRGO and TAMA should be able to detect the high-frequency gravitational waves produced by extreme astrophysical objects, providing the first direct detection of these disturbances in space–time. With its much longer arm lengths, the space-based interferometer LISA will, if launched, be able to detect lower-frequency gravitational waves, possibly those generated by phase transitions in the early universe. At even lower frequencies, other experiments will look for tiny signatures of gravitational waves in the cosmic microwave background. Source: NASA.

Gravity Wave Spectrum


So it is a footprint then and I might show some of those maps and ask what do these footprints show in the early universe as to say, that given the inflationary timeline what can be garnered about looking back so far as to suggest 13.8 billion years and have such an imprint hold relevance, and equal the very nature of space-time itself.

Figure 18: Results of far-field beam characterization with a chopped thermal source. Left: Typical measured far-field beam on a linear scale. Middle: The Gaussian fit to the measured beam pattern. Right: The fractional residual after subtracting the Gaussian fit. Note finer color scale in the right-hand differenced map.

BICEP2 2014 Release Figures from Papers



The nature of the question for me is a "sensor mode developmental model" that chooses to exemplify gravitational waves over another and I had to make this clear for myself. So you can see where this has lead me. To where I want to further understand. If you choose not to show a comment then I guess that is where I lose.

 
Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...

See:Weber Bars Ring True?

The analogy rests with how the nature of gravitational waves had been sounded so as to show a connection to the WMAP as a footprint. So you have this 2 dimensional map surface as to exemplary how gravitational waves may appear on it, yet,  the visual extent of that correlation is representative to me of a defined configuration space. You need your physics in order to establish any correlation to the timeline of the inflationary model and to see that such a map reveals efforts to penetrate the Planck era. To suggest quantum gravity.

At least two detectors located at widely separated sites are essential for the unequivocal detection of gravitational waves. Local phenomena such as micro-earthquakes, acoustic noise, and laser fluctuations can cause a disturbance at one site, simulating a gravitational wave event, but such disturbances are unlikely to happen simultaneously at widely separated sites. 

Correlating Gravitational Wave Production in LIGO
See Also:


So indeed to have such a map is very telling to me not just of the imprint but also of the sensory mode we had chosen to illustrate that map of the B mode representation as a valid model description of that early universe.

Monday, March 17, 2014

We've Come a Long Way

In 2003 the WMAP craft measured the very small fluctuations – about one part in 100,000 – in the temperature of the cosmic background radiation (coloured regions). These fluctuations, which are in excellent agreement with the predictions of Big Bang theory, originated during inflation and evolved under the influence of both gravity and the pressure of the matter–radiation plasma before particles in the plasma recombined to form hydrogen atoms. Buried in this pattern might also be fluctuations from primordial gravitational waves, but to tease out their signature researchers have to map in detail the polarization of the photons as well as their temperature (white lines represent the electric polarization vector). Since gravitational waves produce a quadrupolar anisotropy and therefore induce polarization without an associated temperature fluctuation, they (and only they) are able to generate a polarization pattern that cannot be expressed as the gradient of a scalar. Source: NASA.

In 2003 the WMAP craft measured the very small fluctuations – about one part in 100,000 – in the temperature of the cosmic background radiation (coloured regions). These fluctuations, which are in excellent agreement with the predictions of Big Bang theory, originated during inflation and evolved under the influence of both gravity and the pressure of the matter–radiation plasma before particles in the plasma recombined to form hydrogen atoms. Buried in this pattern might also be fluctuations from primordial gravitational waves, but to tease out their signature researchers have to map in detail the polarization of the photons as well as their temperature (white lines represent the electric polarization vector). Since gravitational waves produce a quadrupolar anisotropy and therefore induce polarization without an associated temperature fluctuation, they (and only they) are able to generate a polarization pattern that cannot be expressed as the gradient of a scalar. Source: NASA. See: Sounding out the Big Bang

BICEP2 Observatory in Antarctica

Cosmic searches at the South Pole. The BICEP-2 Telescope is the up-facing dish at right. The larger white dish is the South Pole Telescope (SPT), and the building is the Dark Sector Laboratory. Both experiments observe in the millimeter-submillimeter part of the spectrum, mapping polarization patterns in the cosmic background radiation.

...... will announce a “major discovery” about B-modes in the cosmic microwave background See: Who should get the Nobel Prize for cosmic inflation?

UPDATE
Closing thoughts -
BICEP2: Primordial Gravitational Waves!
The BICEP result, if correct, is a spectacular and historic discovery.  In terms of impact on fundamental physics, particularly as a tool for testing ideas about quantum gravity, the detection of primordial gravitational waves is completely unprecedented.  Inflation evidently occurred just two orders of magnitude below the Planck scale, and we have now seen the quantum fluctuations of the graviton.  For those who want to understand how the universe began, and also for those who want to understand quantum gravity, it just doesn't get any better than this.
In fact, it all seems far too good to be true.  And perhaps it is: check back after another experimental team is able to check the BICEP findings, and then we can really break out the champagne.


This should be really interesting.

***

Stanford Professor Andrei Linde celebrates physics breakthrough  

 ***

See Also:

Thursday, January 30, 2014

Helioseismology and Gravitational Waves

The universe is expected to be permeated by a stochastic background of gravitational radiation of astrophysical and cosmological origin. This background is capable of exciting oscillations in solar-like stars. Here we show that solar-like oscillators can be employed as giant hydrodynamical detectors for such a background in the muHz to mHz frequency range, which has remained essentially unexplored until today. We demonstrate this approach by using high-precision radial velocity data for the Sun to constrain the normalized energy density of the stochastic gravitational-wave background around 0.11 mHz. These results open up the possibility for asteroseismic missions like CoRoT and Kepler to probe fundamental physics. See: An upper bound from helioseismology on the stochastic background of gravitational waves

***

The heart-shaped vibrations for the star KIC12253350.
The search for distant planets starts with the vibrations of their stars, and in those vibrations lies a kind of music.

See: Listening to the Stars

***
This page has links to sound files that are "sonification of light curves" of Kepler stars. The light curves contain certain frequencies of brightness variation that are akin to sound waves, but the frequencies are not audible to the human ear. In the sonification process, those inaudible frequencies are analyzed by a mathematical technique called fourier analysis and then scaled to frequencies that the human ear can hear. See: Kepler Star Sounds

9700322

Monday, July 15, 2013

The Universe of Sound: Bill Fontana - Collide@CERN Artist


Bill Fontana is a renowned American sound sculptor who studied with John Cage and is the 2012-2013 Prix Ars Electronica Collide@CERN winner. He began his 2-month residency at CERN with an event entitled "The Universe of Sound" on 4 July 2013, in the CERN Globe of Science & Innovation, from which this excerpt was taken. Guided by his mantra, "All sound is music," Fontana gives samples of his previous work as well as some hints of what is to come during his residency. 

Watch the video of Dr. Subodh Patil, CERN cosmologist and inspiration partner for Bill Fontana: http://www.youtube.com/watch?v=0mCkKD...

 Find out more via http://arts.web.cern.ch/collide/digit...





See Also:


Thursday, July 04, 2013

NASA | First X-Class Solar Flares of 2013




Published on May 13, 2013
On May 12-13 the sun erupted with an X1.7-class and an X2.8-class flare as well as two coronal mass ejections, or CMEs, off the upper left side of the sun. Solar material also danced and blew off the sun in what's called a prominence eruption, both in that spot and on the lower right side of the sun. This movie compiles imagery of this activity from NASA's Solar Dynamics Observatory and from the ESA/NASA Solar Heliospheric Observatory.

Music: "Long Range Cruise" by Lars Leonhard, courtesy of the artist and BineMusic. www.lars-leonhard.de


This video is public domain and can be downloaded at: http://svs.gsfc.nasa.gov/vis/a010000/...

Monday, July 01, 2013

Songs of the Stars: the Real Music of the Spheres



Songs of the Stars: the Real Music of the Spheres

Recording Details Speaker(s): Donald Kurtz
Collection/Series: Perimeter Institute Public Lecture Series
Perimeter Institute Recorded Seminar Archive (PIRSA).


Different oscillation modes penetrate to different depths inside a star.


Asteroseismology (from Greek ἀστήρ, astēr, "star"; σεισμός, seismos, "earthquake"; and -λογία, -logia) also known as stellar seismology[1][2] is the science that studies the internal structure of pulsating stars by the interpretation of their frequency spectra. Different oscillation modes penetrate to different depths inside the star. These oscillations provide information about the otherwise unobservable interiors of stars in a manner similar to how seismologists study the interior of Earth and other solid planets through the use of earthquake oscillations.[2]

Asteroseismology provides the tool to find the internal structure of stars. The pulsation frequencies give the information about the density profile of the region where the waves originate and travel. The spectrum gives the information about its chemical constituents. Both can be used to give information about the internal structure. Astroseismology effectively turns tiny variations in the star's light into sounds.[3]


Contents

Oscillations

The oscillations studied by asteroseismologists are driven by thermal energy converted into kinetic energy of pulsation. This process is similar to what goes on with any heat engine, in which heat is absorbed in the high temperature phase of oscillation and emitted when the temperature is low. The main mechanism for stars is the net conversion of radiation energy into pulsational energy in the surface layers of some classes of stars. The resulting oscillations are usually studied under the assumption that they are small, and that the star is isolated and spherically symmetric. In binary star systems, stellar tides can also have a significant influence on the star's oscillations. One application of asteroseismology is neutron stars, whose inner structure cannot be directly observed, but may be possible to infer through studies of neutron-star oscillations.[citation needed]


Wave types


Waves in sun-like stars can be divided into three different types;[4]
  • p-mode: Acoustic or pressure (p) modes,[2] driven by internal pressure fluctuations within a star; their dynamics being determined by the local speed of sound.
  • g-mode: Gravity (g) modes, driven by buoyancy,[5]
  • f-mode: Surface gravity (f) modes, akin to ocean waves along the stellar surface.[6]
Within a sun-like star, such as Alpha Centauri, the p-modes are the most prominent as the g-modes are essentially confined to the core by the convection zone. However, g-modes have been observed in white dwarf stars.[5]


Solar seismology


Helioseismology, also known as Solar seismology, is the closely related field of study focused on the Sun. Oscillations in the Sun are excited by convection in its outer layers, and observing solar-like oscillations in other stars is a new and expanding area of asteroseismology.

Space missions


A number of active spacecraft have asteroseismology studies as a significant part of their mission.
  • MOST – A Canadian satellite launched in 2003. The first spacecraft dedicated to asteroseismology.
  • COROT – A French led ESA planet-finder and asteroseismology satellite launched in 2006
  • WIRE – A NASA satellite launched in 1999. A failed infrared telescope now used for asteroseismology.
  • SOHO – A joint ESA / NASA spacecraft launched in 1995 to study the Sun.
  • Kepler – A NASA planet-finder spacecraft launched in 2009 that is currently making asteroseismology studies of over a thousand stars in its field, including the now well-studied subgiant KIC 11026764.[7][8]

Red giants and asteroseismology


Red giants are a later stage of evolution of sun-like stars after the core hydrogen fusion ceases as the fuel runs out. The outer layers of the star expand by about 200 times and the core contracts. However, there are two different stages, first one when there is fusion of hydrogen in a layer outside the core, but none of helium in the core, and then a later stage when the core is hot enough to fuse helium. Previously, these two stages could not be directly distinguished by observing the star's spectrum, and the details of these stages were incompletely understood. With the Kepler mission, asteroseismology of hundreds of relatively nearby red giants[9] enabled these two types of red giant to be distinguished. The hydrogen-shell-burning stars have gravity-mode period spacing mostly ~50 seconds and those that are also burning helium have period spacing ~100 to 300 seconds. It was assumed that, by conservation of angular momentum, the expansion of the outer layers and contraction of the core as the red giant forms would result in the core rotating faster and the outer layers slower. Asteroseismology showed this to indeed be the case[10] with the core rotating at least ten times as fast as the surface. Further asteroseismological observations could help fill in some of the remaining unknown details of star evolution.


References

  1. ^ Ghosh, Pallab (23 October 2008). "Team records 'music' from stars". BBC News. Retrieved 2008-10-24.
  2. ^ a b c Guenther, David. "Solar and Stellar Seismology". Saint Mary's University. Retrieved 2008-10-24.
  3. ^ Palmer, Jason (20 February 2013). "Exoplanet Kepler 37b is tiniest yet - smaller than Mercury". BBC News. Retrieved 2013-02-20.
  4. ^ Unno W, Osaki Y, Ando H, Saio H, Shibahashi H (1989). Nonradial Oscillations of Stars (2nd ed.). Tokyo, Japan: University of Tokyo Press.
  5. ^ a b Christensen-Dalsgaard, Jørgen (June 2003). "Chapter 1" (PDF). Lecture Notes on Stellar Oscillations (5th ed.). p. 3. Retrieved 2008-10-24.
  6. ^ Christensen-Dalsgaard, Jørgen (June 2003). "Chapter 2" (PDF). Lecture Notes on Stellar Oscillations (5th ed.). p. 23. Retrieved 2008-10-24.
  7. ^ Metcalfe, T. S.; et al (2010-10-25). "A Precise Asteroseismic Age and Radius for the Evolved Sun-like Star KIC 11026764". The Astrophysical Journal 723 (2): 1583. arXiv:1010.4329. Bibcode:2010ApJ...723.1583M. doi:10.1088/0004-637X/723/2/1583.
  8. ^ "Graphics for 2010 Oct 26 webcast – Images from the Kepler Asteroseismology Science Consortium (KASC) webcast of 2010 Oct 26". NASA. 2010-10-26. Retrieved 3 November 2010.
  9. ^ Bedding TR, Mosser B, Huber D, Montalbaan J, et al. (Mar 2011). "Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars". Nature 471 (7340): 608–611. arXiv:1103.5805. Bibcode:2011Natur.471..608B. doi:10.1038/nature09935. PMID 21455175.
  10. ^ Beck, Paul G.; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; et al. (Jan 2012). "Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes". Nature 481 (7379): 55–57. arXiv:1112.2825. Bibcode:2012Natur.481...55B. doi:10.1038/nature10612. PMID 22158105.

 

External links






See Also:


Thursday, May 02, 2013

NASA operates a system observatory of Heliophysics missions

The Heliophysics System Observatory (HSO) showing current operating missions, missions in development, and missions under study. Credit: NASA

NASA operates a system observatory of Heliophysics missions, utilizing the entire fleet of solar, heliospheric, and geospace spacecraft to discover the processes at work throughout the space environment. In addition to its science program, NASA’s Heliophysics Division routinely partners with other agencies to fulfill the space weather research or operational objectives of the nation. See: What are our current capabilities to predict space weather?



See Also:


Space Weather


Circular Coronal Mass Ejection A coronal mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video, taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/SDO



Current Space Weather Conditions

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 May 01 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 121 Issued at 2200Z on 01 May 2013



Auroral Activity Extrapolated from NOAA POES

See Also:

Wednesday, February 20, 2013

Loop Production on the Sun


On July 19, 2012, an eruption occurred on the sun that produced a moderately powerful solar flare and a dazzling magnetic display known as coronal rain. Hot plasma in the corona cooled and condensed along strong magnetic fields in the region. Magnetic fields, are invisible, but the charged plasma is forced to move along the lines, showing up brightly in the extreme ultraviolet wavelength of 304 Angstroms, and outlining the fields as it slowly falls back to the solar surface See: Raining Loops on the Sun



See Also:


Monday, September 03, 2012

Space Weather Now




2012-09-03 15:14 UTC  G2 (Moderate) Geomagnetic Storm in Progress
G2 (Moderate) geomagnetic storming is ongoing now as a result of the coronal mass ejection (CME) arrival associated with the August 31st filament eruption.  Continued geomagnetic storming is expected in the near term as the CME continues to affect Earth.  Solar radiation storm levels continue to hover near the S1 (Minor) event threshold but should continue their slow decline toward background levels.  Stay tuned for updates. See:Space Weather Prediction Center

Thursday, August 30, 2012

Radiation Belt Storms Probes Launched



 NASA hosted a two-day event for 50 social media followers on August 22-23, 2012, at NASA's Kennedy Space Center in Florida. NASA's twin Radiation Belt Storm Probes (RBSP) are scheduled to lift off aboard a United Launch Alliance Atlas V rocket at 4:08 a.m. on August 23. Designed for a two-year primary science mission in orbit around Earth, RBSP will provide insight into our planet's radiation belts, and help scientists predict changes in this critical region of space.

 http://youtu.be/w0SaKPuocRA 


NASA's Radiation Belt Storm Probes blasted off from Cape Canaveral on August 30th, 2012. Bristling with sensors, the heavily-shielded spacecraft are on a 2-year mission to discover what makes the radiation belts so dangerous and so devilishly unpredictable.
"We've known about the Van Allen Belts for decades yet they continue to surprise us with unexpected storms of 'killer electrons' and other phenomena," says mission scientist David Sibeck, "The Storm Probes will help us understand what's going on out there." 


RBSP (instruments, 200px)

Each of the two Storm Probes is bristling with sensors to count energetic particles, measure plasma waves, and detect electromagnetic radiation. Learn more
See: The Radiation Belt Storm Probes


See also

Sunday, August 26, 2012

Radiation Belt Storm Probes (RBSP)



The launch of an Atlas V carrying NASA's Radiation Belt Storm Probes (RBSP) payload was scrubbed today due to weather conditions associated with lightning, as well as cumulus and anvil clouds. With the unfavorable weather forecast as a result of Tropical Storm Isaac, the leadership team has decided to roll the Atlas V vehicle back to the Vertical Integration Facility to ensure the launch vehicle and twin RBSP spacecraft are secured and protected from inclement weather. Pending approval from the range, the launch is rescheduled to Thursday, Aug. 30 at 4:05 a.m. Eastern Daylight Time. SeeRBSP Launch Targeted for No Earlier Than Aug. 30



RBSP is being designed to help us understand the Sun’s influence on Earth and Near-Earth space by studying the Earth’s radiation belts on various scales of space and time. 

The instruments on NASA’s Living With a Star Program’s (LWS) Radiation Belt Storm Probes (RBSP) mission will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The RBSP mission is part of the broader LWS program whose missions were conceived to explore fundamental processes that operate throughout the solar system and in particular those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP instruments will measure the properties of charged particles that comprise the Earth’s radiation belts, the plasma waves that interact with them, the large-scale electric fields that transport them, and the particle-guiding magnetic field. 

The two RBSP spacecraft will have nearly identical eccentric orbits. The orbits cover the entire radiation belt region and the two spacecraft lap each other several times over the course of the mission. The RBSP in situ measurements discriminate between spatial and temporal effects, and compare the effects of various proposed mechanisms for charged particle acceleration and loss. See: RBSP



Credit: NASA/Johns Hopkins University Applied Physics Laboratory
Engineers at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., prepare to place Radiation Belt Storm Probes spacecraft "B" in a thermal-vacuum chamber, where they can make sure the propulsion system will stand up to the range of hot, cold and airless conditions RBSP will face in outer space. This round of testing took place in late October-early November 2010.



See Also:

Monday, April 23, 2012

Songs of the Stars: the Real Music of the Spheres


With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universe.-Wayne Hu



The Pythagoreans 2500 years ago believed in a celestial "music of the spheres", an idea that reverberated down the millennia in Western music, literature, art and science. Now, through asteroseismology (the study of the internal structure of pulsating stars), we know that there is a real music of the spheres. The stars have sounds in them that we use to see right to their very cores. This multi-media lecture looks at the relationship of music to stellar sounds. You will hear the real sounds of the stars and you will hear musical compositions where every member of the orchestra is a real (astronomical) star! You will also learn about some of the latest discoveries from the Kepler Space Mission that lets us "hear" the stars 100 times better than with telescopes on the ground See:Don Kurtz, University of Central Lancashire-Wednesday, May 2, 2012 at 7:00 pm


 See Also:

Friday, December 16, 2011

Comet LoveJoy

Comet Lovejoy seen by SOHO
“On average, new Kreutz-group comets are discovered every few days by SOHO, but from the ground they are much rarer to see or discover,” says Karl Battams, Naval Research Laboratory, who curates the Sun-grazing comets webpage. See Also: The beginning of the end for comet Lovejoy
 One instrument watching for the comet was the Solar Dynamics Observatory (SDO), which adjusted its cameras in order to watch the trajectory. Not only does this help with comet research, but it also helps orient instruments on SDO -- since the scientists know where the comet is based on other spacecraft, they can finely determine the position of SDO's mirrors. This first clip from SDO from the evening of Dec 15, 2011 shows Comet Lovejoy moving in toward the sun. 
Comet Lovejoy survived its encounter with the sun. The second clip shows the comet exiting from behind the right side of the sun, after an hour of travel through its closest approach to the sun. By tracking how the comet interacts with the sun's atmosphere, the corona, and how material from the tail moves along the sun's magnetic field lines, solar scientists hope to learn more about the corona. This movie was filmed by the Solar Dynamics Observatory in 171 Angstrom wavelength, which is typically shown in yellow.

Credit: NASA/SDO

The Very Latest SOHO Images

Friday, November 11, 2011

Space Weather: Wind in Space

An X1.9 Flare at 2011 Nov 03 2027 UT!

 

Full SDO cadence (12 sec) movie of the M2.5 flare and associated CME from June 7,2011; composite of AIA wavelengths 211 (red channel), 193 (green), and 171 (blue); 05:00-13:00UTC; 2400 frames (300 frames per hour). Images are rotated 90 degrees for a normal aspect ratio. It took 236 GB of hard drive space, 5 minutes of programming, and about 9 hours of processing on a 2.26GHz quad-core to create this. More to come!

Wednesday, September 14, 2011

Solar Weather

 

The Sun as viewed by the Solar Dynamics Observatory (SDO) in 193 angstrom. The verticle black area near the center is the coronal hole. Credit: NASA/SDO

› View larger UPDATE: 09.09.11 - A strong geomagnetic storm is in progress following the impact of a CME around 7:30 EDT on Sept. 9th. This could be the first of several hits from a series of CMEs expected to reach Earth during the weekend, related to the sunspot 1283 flares during the week. High-latitude sky watchers should be alert for auroras after nightfall.

A high-speed solar wind stream flowing from a large coronal hole should reach Earth on Sept. 11-12 sparking even more aurora.

Friday, April 01, 2011

Solar Dynamics Observatory Pick of the Week

(Click on Image for Larger Veiwing)


Then and Now

A side-by-side comparison of the Sun from precisely two years ago (left, from SOHO) to the present (right, from Solar Dynamics Observatory) dramatically illustrates just how active the Sun has become (Mar. 27-28, 2011). Viewed in two similar wavelengths of extreme ultraviolet light, the Sun now sports numerous active regions that appear as lighter areas that are capable of producing solar storms. Two years ago the Sun was in a very quiet period (solar minimum). The Sun's maximum period of activity is predicted to be around 2013, so we still have quite a ways to go.See: Solar Dynamics Observatory

Monday, January 03, 2011

Concepts Fade to Moments

Relativity, by M. C. Escher. Lithograph, 1953.


Of course I struggle "with" as to be free and in liberation of, as if to liberate oneself from all the constraints that we have applied to our circumstance, "by choice." Can this be done? Can a human being actually float and defy gravity? I mean, how ridiculous?:) No....not one of those meditating bouncing beans either.


So it is ever the exercise in my mind to clarify and to seek an understanding of something given that holds great meaning, and may help me to understand an experience that will not let go..
  
Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.


I was given an image in mind a long time ago that has stayed close to me even while I concertize myself to the very explanations that science has to offer as a basis of fact. That if one could in a sense "experience an opposing force of another body,"  that "through playing" one can come into what I had learn about the sensing of, as to blend with opposition. So as to move accordingly, while knowing that it could reach an extreme, I could in turn, turn it back on itself.

A body's mass also determines the degree to which it generates or is affected by a gravitational field. If a first body of mass m1 is placed at a distance r from a second body of mass m2, each body experiences an attractive force F whose magnitude is
 F = G\,\frac{m_1 m_2}{r^2} \, ,
where G is the universal constant of gravitation, equal to 6.67×10−11 kg−1 m3 s−2. This is sometimes referred to as gravitational mass (when a distinction is necessary, M is used to denote the active gravitational mass and m the passive gravitational mass). Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are equivalent; this is entailed in the equivalence principle of general relativity.


If you have ever expressed this physically, as in some Martial Art Form,  some competitive edge in reaction, then it will have been grokked at it's fullest, because you have blended the concept, with movement. It's as if structurally you are given lines to follow, but now have to extend those lines into actually movements,  from the mind, into the physical body.

View of inner parts of earth. # continental crust # oceanic crust # upper mantle # lower mantle # outer core # inner core * A : Mohorovičić discontinuity * B : Core-mantle boundary (Gutenberg discontinuity) * C : Lehmann discontinuity * Author : KronicTOOL * Software : Photoshop (Click on Image for larger viewing)


Now one would have to assume there is some mathematical basis to this exchange, yet I would rather focus on the exchange, as to define this in our life as something "sensual in movement and form." Is it perfectly systematical and symmetrical "that one side had to equal the other," in order for me to explain something about life as an expressive attitude about our dealings in society? How "justice might work" as a balancing scale? A balancing scale, about life and it's truths

Weight at Earth's Core

Would your body weigh more or less if standing on the Earth's core? What about above sea level?

As you go further inside the Earth, the force you feel due to gravity lessens, assuming the Earth is has a uniform density all the way throughout. Less force means you weigh less.

The reason is that the mass attracting you is inside a sphere, and is given by M = (4/3) * pi * (radius)3 * density

The force you feel is given by F = G * M * (your mass) / (radius)2

This means the net force is F = G * (4/3) * pi * radius * density * (your mass)

(pi=3.14159 and G = Newton's gravitational constant)

So as you go further inside the Earth, the radius is decreasing, so the force you feel is decreasing. The mass above you oddly enough doesn't contribute at all to any net force on your body.

In reality, of course, the Earth is not of uniform density, and there is a slight increase in force as you go down from the surface, before it begins to decrease again. Still, you weigh less standing on the Earth's core.

As far as what happens above sea level - you must realize that what happens outside the Earth is different from what happens inside the Earth. Inside, as you go deeper and deeper, the mass attracting you is less and less (as stated). Above sea level (the surface of the Earth, specifically) as you go further and further away, the mass remains constant (obviously), but the distance gets larger and larger, which makes the force (given by F = G * M(Earth) * M(you) / r2) smaller.

Notice that the formula that applies inside the Earth is different from the one that applies outside.

Dr. Louis Barbier
(October 2003)

So there is this ancient notion about gravity being the same at all places on the earth, that slighting the idea of such minute differences, one would have to say "that it is not the same" and hence has left oneself "back in time" before it could be understood that  the earth can be looked at in another way? That the length and distance to it's outer edge, as some inverse square law can be explained "of all things." Systemically explaining away,  by understanding that gravity "is the same according to the weight of" is not the same in all places.

Truth, is that slight difference?

So how does one break free inside, between the understanding of Feather and Iron, versus Feather and Heart?

Structurally, building any foundation there are exactitude's toward defining that space according to  dimensional attributes as to straight lines and angles of perception. If you actualize this in physical form, you may have constructed a building. There are rules according to Pythagorean theorem that allows you build square things.

The emergence of,  follows distinctive rules according to expression, artistically inclined, and for me, any point in space has such abilities. How structurally sound, any expressive display that for realities sake and purpose, we see where such expressions can arrive out of nothing? It was not logical and did not make sense to me that such expression can appear  out of nothing, to become something. So there is a bias here for me about what is being revealed in that point, as well as, of what is being revealed in that moment.


I am of course interested in the creative process of a scientist. I am trying to be as responsible as I can about our comparison of the Heart and Truth(Feather) on the same scale as to be lead by example so as to define this concept better as,  "If the heart was free from the impurities of sin," not as some religious perspective about good and evil, but about the slight differences in the changes in the gravity of earth, and about the object that occupies that space, as well as,  the inherent nature of that truth.


Composition of Earth's mantle in weight percent[16][citation needed]
Element Amount Compound Amount
O 44.8
Si 21.5 SiO2 46
Mg 22.8 MgO 37.8
Fe 5.8 FeO 7.5
Al 2.2 Al2O3 4.2
Ca 2.3 CaO 3.2
Na 0.3 Na2O 0.4
K 0.03 K2O 0.04
Sum 99.7 Sum 99.1



If I should point toward elemental considerations, each to its own,  then,  as some expression of some inverse square law toward that outer rim of physicality of earth's domain, then  it is with this insight that I look toward  the "weight" of the concept with which "entrance to freedoms of eternal life" are nothing more then the recognition of "what weighs" according to those truths and what we adopt in our own lives according to the choices we make. If I say Heart, then it is wise that such entrances into the human being, is but a mental thing about how we weight things according to our set of criteria according Truth?

Cross section of the whole Earth, showing the complexity of paths of earthquake waves. The paths curve because the different rock types found at different depths change the speed at which the waves travel. Solid lines marked P are compressional waves; dashed lines marked S are shear waves. S waves do not travel through the core but may be converted to compressional waves (marked K) on entering the core (PKP, SKS). Waves may be reflected at the surface (PP, PPP, SS).

Seismographs detect the various types of waves. Analysis of such records reveals structures within the Earth.