Pages

Showing posts with label Colour of Gravity. Show all posts
Showing posts with label Colour of Gravity. Show all posts

Saturday, December 21, 2013

Weber Bars Ring True?



Gravitational Radiation

Gravitational waves have a polarization pattern that causes objects to expand in one direction, while contracting in the perpendicular direction. That is, they have spin two. This is because gravity waves are fluctuations in the tensorial metric of space-time.


How would you map this above?

WMAP image of the Cosmic Microwave Background Radiation


Here's the thing for those blog followers who are interested in the application of sound as a visual representation of an external world of senses.



 In this example I’m going to map speed to the pitch of the note, length/postion to the duration of the note and number of turns/legs/puffs to the loudness of the note.See: How to make sound out of anything.

I have my reasons for looking at the trail that began with Gravitational wave research and development. If we are accustom to seeing and concreting all that reality has for us,  can a question be raised in mind with how one has been shocked by an anomaly?

I am not asking for anyone  to abandon their views on the science of,  just respect that while not following the rules of  science here as to my motivational underpinnings, I have asked if science can see gravity in ways that have not be thought of before.  This is not to counter anything that has been done before.

The historic approach to Gravitational Research was important as well,  to trace it back to it's beginning.

Can we use such measures to exemplify an understanding of the world we live according  to a qualitative approach? This has occupied my thoughts back to when I first blogged about JosephWeber in 2005. Here is a 2000 article linked.
In the late 1950s, Weber became intrigued by the relationship between gravitational theory and laboratory experiments. His book, General Relativity and Gravitational Radiation, was published in 1961, and his paper describing how to build a gravitational wave detector first appeared in 1969. Weber's first detector consisted of a freely suspended aluminium cylinder weighing a few tonnes. In the late 1960s and early 1970s, Weber announced that he had recorded simultaneous oscillations in detectors 1000 km apart, waves he believed originated from an astrophysical event. Many physicists were sceptical about the results, but these early experiments initiated research into gravitational waves that is still ongoing. Current gravitational wave experiments, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA), are descendants of Weber's original work. See:Joseph Weber 1919 - 2000
***



Space, we all know what it looks like. We've been surrounded by images of space our whole lives, from the speculative images of science fiction to the inspirational visions of artists to the increasingly beautiful pictures made possible by complex technologies. But whilst we have an overwhelmingly vivid visual understanding of space, we have no sense of what space sounds like.

  See previous entries on "Weber Bar" by typing in Search Feature on side bar. See also below.


Monday, April 15, 2013

Colour and Sound

Sounds and colors are "metered measures?" It is something we have designed in order to account for communication of certain facts? While I present some quotations here for consideration, it is also in the quest to understand what illusion and reality can mean when not all parts of the consensus can agree on what constitute what.
To “hear” the data we can map physical properties (The Data) to audible properties (The Sound) in pretty much any way we choose. For a physicist, an obvious way to do this might be to map speed to pitch. I think this is obvious for a physicist because both of these things are measured “per second” (pitch or frequency is measured in Hertz, which means vibrations per second). But we don’t have to do the obvious, we can map any physical property to any audible property. In this example I’m going to map speed to the pitch of the note, length/position to the duration of the note and number of turns/legs/puffs to the loudness of the note. Now I have to choose starting positions and ranges. When I do this I have to consider that:How to make sound out of anything.
We know that colour is a psychophysical experience of an observer which changes from observer to observer and is therefore impossible to replicate absolutely. In order to quantify colour in meaningful terms we must be able to measure or represent the three attributes that together give a model of colour perception. i.e. light, object and the eye. All these attributes have been standardised by the CIE or Commission Internationale de l'Eclairage. The colours of the clothes we wear and the textiles we use in our homes must be monitored to ensure that they are correct and consistent. Colour measurement is therefore essential to put numbers to colour in order to remove physical samples and the interpretation of results.See:Colour measuring equipment
In the arts and of painting, graphic design, and photography, color theory is a body of practical guidance to color mixing and the visual impact of specific color combinations. Although color theory principles first appear in the writings of Alberti (c.1435) and the notebooks of Leonardo da Vinci (c.1490), a tradition of "colory theory" begins in the 18th century, initially within a partisan controversy around Isaac Newton's theory of color (Opticks, 1704) and the nature of so-called primary colors. From there it developed as an independent artistic tradition with only sporadic or superficial reference to colorimetry and vision science.See: Color Theory
CIE L*a*b* (CIELAB) is the most complete color model used conventionally to describe all the colors visible to the human eye. It was developed for this specific purpose by the International Commission on Illumination (Commission Internationale d'Eclairage, hence its CIE initialism). The * after L, a and b are part of the full name, since they represent L*, a* and b*, derived from L, a and b. CIELAB is an Adams Chromatic Value Space. The three parameters in the model represent the lightness of the color (L*, L*=0 yields black and L*=100 indicates white), its position between magenta and green (a*, negative values indicate green while positive values indicate magenta) and its position between yellow and blue (b*, negative values indicate blue and positive values indicate yellow). The Lab color model has been created to serve as a device independent model to be used as a reference. Therefore it is crucial to realize that the visual representations of the full gamut of colors in this model are never accurate. They are there just to help in understanding the concept, but they are inherently inaccurate. Since the Lab model is a three dimensional model, it can only be represented properly in a three dimensional space.See: CIE 1976 L*, a*, b* Color Space (CIELAB)
So in a sense we have developed "a method" by which application of color in this case would be used. Is it highly subjective in one's own case without some kind of metered measure and one would have to consider, by which consensus such a model would be applied(production of specific colours chemically induced for instance) to have a desired effect.

Evan Grant Making sound visible through cymatics 

I give this link above in order to establish that sound can have an architectural correlation in terms of a vibrational signature. Has a qualitative signature of sorts.So for me as I moved ahead in this blog format it was important for me to see how sound can be used.
Space, we all know what it looks like. We've been surrounded by images of space our whole lives, from the speculative images of science fiction to the inspirational visions of artists to the increasingly beautiful pictures made possible by complex technologies. But whilst we have an overwhelmingly vivid visual understanding of space, we have no sense of what space sounds like.Honor Harger: A history of the universe in sound
So while one might consider colorimetric space here one might convert such a space to what every point in that space represents in terms of a color? So you devise parameters.
Gravity is usually measured in units of acceleration. In the SI system of units, the standard unit of acceleration is 1 metre per second squared (abbreviated as m/s2). Other units include the gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (gn), equal to 9.80665 m/s2. The value of the gn approximately equals the acceleration due to gravity at the Earth's surface (although the actual acceleration g varies fractionally from place to place). See: Gravimetry
It’s just a matter of lasers and mirrors, but using Michelson’s 19th-century techniques and LIGO’s 21st-century technology, scientists will soon “hear” a phenomenon first predicted by Einstein’s famous 20th-century theory.See: LIGO 02

Thursday, May 31, 2012

Mirror Neurons

Neuroscientific evidence suggests that one basic entry point into understanding others' goals and feelings is the process of actively simulating in our own brain the actions we observe in others. This involves the firing of neurons that would be activated were we actually performing an action, although we are only observing it in someone else. Neurons performing mirroring functions have been directly observed in primates and other species, including birds. In humans, brain activity consistent with "mirroring" has been found in the premotor cortex, the supplementary motor area, the primary somatosensory cortex and the inferior parietal cortex.
The data revealed that even the most complex, abstract emotions—those that require maturity, reflection, and world knowledge to appreciate—do involve our most advanced brain networks. However, they seem to get their punch—their motivational push—from activating basic biological regulatory structures in the most primitive parts of the brain, those responsible for monitoring functions like heart rate and breathing. In turn, the basic bodily changes induced during even the most complex emotions—e.g., our racing heart or clenched gut—are "felt" by sensory brain networks. When we talk of having a gut feeling that some action is right or wrong, we are not just speaking metaphorically.


So, I'm saying the mirror neuron system underlies the interface allowing you to rethink about issues like consciousness,representation of self,what separates you from other human beings,what allows you to empathize with other human beings,and also even things like the emergence of culture and civilization,which is unique to human beings. See: VS Ramachandran: The neurons that shaped civilization 



  How important is the environment in that we might see the development of the conditions of "specific types of neurons" when the color can dictate the type of neuron developed? Can we say that the color(emotion) is an emotive state that we might indeed create in the type of consciousness with which we meet the world. A consciousness that that sets the trains of thought given the reality of our own perceptions. Or,  perpetuated thought processes unravelled in a world of our own illusions?


In a nutshell, what Karim showed was that each time a memory is used, it has to be restored as a new memory in order to be accessible later. The old memory is either not there or is inaccessible. In short, your memory about something is only as good as your last memory about it. Joseph LeDoux

Psychology professor Karim Nader is helping sufferers of post-traumatic stress disorder lessen debilitating symptoms—and in some cases, regain a normal life.Owen Egan See also: The Trauma Tamer See Also: Brain Storming

IC: Why is this research so important?

Karim Nader: There are a lot of implications. All psychopathological disorders, such as PTSD, epilepsy, obsessive compulsive disorders, or addiction—all these things have to do with your brain getting rewired in a way that is malfunctioning. Theoretically, we may be able to treat a lot of these psychopathologies. If you could block the re-storage of the circuit that causes the obsessive compulsion, then you might be able to reset a person to a level where they aren’t so obsessive. Or perhaps you can reset the circuit that has undergone epilepsy repeatedly so that you can increase the threshold for seizures. And there is some killer data showing that it’s possible to block the reconsolidation of drug cravings.

The other reason why I think it is so striking is that it is so contrary to what has been the accepted view of memory for so long in the mainstream. My research caused everybody in the field to stop, turn around and go, “Whoa, where’d that come from?” Nobody’s really working on this issue, and the only reason I came up with this is because I wasn’t trained in memory. [Nader was originally researching fear.] It really caused a fundamental reconceptualization of a very basic and dogmatic field in neuroscience, which is very exciting. It is the first time in 100 years that people are starting to come up with new models of memory at the physiological level.

Part of the understanding for me is that in creating this environment for neural development the retention of memory has to have some emotive basis which arises from the ancient part of our brain in that it is associated with the heart response.



 Savas Dimopoulos

Here’s an analogy to understand this: imagine that our universe is a two-dimensional pool table, which you look down on from the third spatial dimension. When the billiard balls collide on the table, they scatter into new trajectories across the surface. But we also hear the click of sound as they impact: that’s collision energy being radiated into a third dimension above and beyond the surface. In this picture, the billiard balls are like protons and neutrons, and the sound wave behaves like the graviton. See: The Sound Of Billiard Balls
While these physiological processes are going on in our bodies the chemical responses of emotion trigger manifestations in the world outside of our bodies. Let us say consciousness exists "at the periphery of our bodies." What measure then to assess the realization that such manifestations internally are in the control of our manipulations of living experience? Are we then not caught in the throes of and are we not  machine like to think such associations could have ever been produced in a robot like being manufactured?

Of course this is a fictional representation above of what may resound within and according to the experiences we may have? The question is then how are memories retained? How do memories transmit through out our endocrinology system the nature of our experiences so that we see consciousness as a form of the expression through which we color our world?

Wednesday, April 11, 2012

The Colour of our Emotions

"The worst disease afflicting human kind is hardening of the categories." - Artist Bob Miller. Intuition
RBM: On Castaneda There are some people here who think that Castaneda's work maps quite well to [it]. Specifically, the nagual and NPMR are conceptual perfect matches, along with the tonal and PMR. Tom has used the metaphor of the warrior several times in these groups in a way that matched Castaneda's
I think a lot of us within a given generation would have been moved by this anthropological discourse on the shamanic knowledge that we can gain from such cultures.


 A Path with a Heart

I have told you that to choose a path you must be free from fear and ambition. The desire to learn is not ambition. It is our lot as men to want to know.

The path without a heart will turn against men and destroy them. It does not take much to die, and to seek death is to seek nothing.

 The artistic endeavour chosen to transmit knowledge and wisdom was a success in that we could take from it and find comparative points of view that could be shared in our own daily lives.

 It was this way for me in that the Tonal was significant formulation of a methodology toward transforming our emotive internal states to something that not only existed within but as a result existed outwardly as well. Helped to induce that connection.
True creativity often starts where language ends-Arthur Koestler
I mean you've exhausted all avenues to a certain problem? You have all this data and you can't just seem to get past the problem or how to move on.
Consciousness emerges when this primordial story-the story of a object causally changing the state of the body-can be told using the universal nonverbal vocabulary of body signals. The aparent self emerges as the feeling of a feeling. When the story is first told, sponataneously, without it ever being requested, and furthermore after that hwhen the story is repeated, knowledge about hwat the organism is living through automatically emerges as the answer to a question never asked. From that moment on, we begin to know.Pg 31, The Feeling of What Happens, by Antonio Damasio
Receptivity, as to gaining access to information, was as I had seen made a success by entrancing calmness(sitting by a river possibly....what brain state is most conducive in waves?) as an ideal to knowing that a solution can come. Secondly, knowing that you were connected to something much vaster then your own brain/consciousness?

How would this be possible? It is as if you ask the question to make way for a possible answer you see? For myself then it was about understanding how a connection could be made to the the heart, as to being open, and moving this idea from matters states( all our work and conclusions) to energy that was capable and transforming in the mind/consciousness.

Involution and Evolution


A "color of gravity" emotively held within the context of mind as a emotive force expressed through our endocrinology system. Retention of memories. Our pasts.

 While heavily connected to these emotions in memory states how could we transform our thinking mind but to recognized what we had retained and what we retain with it?

This was a informativeness process then of what was framed within the physical structure of our being/brain and the recognition of these matters states as conclusive and solidified ideals as to what would be contained in our attitudes and consequences in life??

Friday, December 02, 2011

A Synesthetes Talk in the Afterlife :)

Looking up a list of who's who in the Synesthetes world I found it quite interesting. This YouTube Video below was attributed too Maureen Seaberg

 When Mayer was seventeen, he was stricken with cardiac dysrhythmia and was hospitalized for a weekend. Reflecting on the incident, Mayer said, “That was the moment the songwriter in me was born,” and he penned his first lyrics the night he got home from the hospital. See: John Mayer (October 16, 1977), musician, sound to color

John Mayer's song about gravity was quite appealing for obvious reasons? Maybe some will understand why but in science it cannot be so.



 See: Synesthesia Resource Center

Monday, June 06, 2011

Color of Gravity 4



This is the most important song I’ve ever written, it's a time capsule song. I will listen to it every day of my life if I need to. It's honest to God the most important song I’ve ever written in my life, and it has the fewest words. I was in LA, and I was there for the summer, just writing tunes, and I was in the shower. And I don't know where it came from, but it's the damn truth you know, and I just sang, "gravity...is working against me.Gravity (John Mayer song)
When at a loss of words as to the way in which we can express our feelings, and the way in which we are experiencing the world Mayer found a way in which to express the inevitable undercurrents that he was experiencing in LA?

A chalk board example about love not being gravity comes to mind right around the time the PI Institute was giving it's first tours?

Well I have indeed stuck to Einsteins conclusion about the observer and time(not outside of it). I had extended it "to mean" as a reference to a colorimetric, and not a calorimeter position within the configuration space, with regard to our place in time of this universe. Our mental state.

So it all extends to the weight of something we can apply, and the "truth in comparison weighted" as to "now," that there is an extension of this thinking to me in our mental states which we can occupy according to our choices. Our labels. The quest for universal language of understanding?

Close Encounters

Close Encounters was a long-cherished project for Spielberg.

In the sky above them, streaking objects resembling comets whoosh through the blackness. Roy whispers expectantly to Jillian: "We're the only ones who know. The only ones." Three tiny, neon-lit scout ships appear with the tiny red orb following in their wake - they hover over the end of the runway. Audio analysis personnel ready themselves to communicate with the sparkling, illuminated objects at the rendezvous point. A giant electronic board covered with colored strips and a powerful synthesized musical keyboard have been constructed at the site. The Air Force scientists duplicate the electronic sounds that they have heard in transmissions, mixing them with light sequences (on colored strips) to communicate. The computer and audio specialists play the loud clear sounds of the five-note sequence after the signal: "Sunset"
Start with the tone. (Pinkish-red) - G
Up a full tone. (Orange) - A
Down a major third. (Purple) - F
Now drop an octave. (Yellow) - F (an octave lower)
Up a perfect fifth. (White) - C


So it is an alien expression by design,  that the language is long sought after, that we might speak on this on a universal level? Yes, although science fiction demonstrate in our movies, there is  a deeper connection as to the wondering of how we may apply a language that is applicable to all human beings? Yes, we require the science of, while looking to the nature of Quantum Gravity. I am immersed in the nature of the gravity in our mental states.



For one minute look through glasses in front of you, your eyes, and switch on as if the whole world is in such a gravity color spectrum, and what is it that your bias have left for you as to the footprints/labels in that configuration space?

You see, songs have this current and undertone that is like a metrical language itself, that is appeasing not only in the choice of linguistics, but in the way such sounds can be fluid toward meaningful expression? The emotive heart songs the soul like to sing?

See Also: Emotion and Reason Balanced: The Mind's Consequence?

Friday, April 01, 2011

Shifting the Way in Which We See


"Where in this day and age, does one go to ask the questions? Where does one go to find like "minded" people who are also seeking the answers?"What If We Could Ask The Big Questions?
Ask yourself could you have been shifted from the way you have always looked at the world.....is the world different then, or, did you not ever consider looking at the world in new way? Obviously you did. I see the trademarks of one pushing the boundary of one's own perceptions. Your asking others to do the same.

A Path with a Heart
I have told you that to choose a path you must be free from fear and ambition. The desire to learn is not ambition. It is our lot as men to want to know.

The path without a heart will turn against men and destroy them. It does not take much to die, and to seek death is to seek nothing.

We have solidify our places in the reality by our acquiescence to the way we have always looked at it. Some of the older folk might have read Carlos Castaneda as a  past time as much as your Pirsig,  questioned the truth of the experiences.... so let's say such a "tonal shift" could have shocked one out of, as all of your life in localization then what can be gained by using that new perspective?
Often, an increase or decrease in some level in this information is indicated by an increase or decrease in pitch, amplitude or tempo, but could also be indicated by varying other less commonly used components.. Sonification

There has to be a method by which others could see in the same way that another can, that it would allow inspection of the world around us together. It should be as if experimentally procedures,  so as to help us to look at a spectrum of definitions pointing toward another with such  a view of the reality in sameness too? How real is the world around as you look?

BBC article-Click on Image

See Also: LHC sound


This is important, in that what we have always been accustomed too, can be changed in the way the world may be measured in terms of it  being vibrant and harmonic, as if sounding in colourful ways. I mean we would want such a procession to be lawful and intelligently explained that there is no misconceptions as to the basis of such a journey as to seeing the world in that different light.

Wednesday, January 12, 2011

Understanding a Perspective About Color of Gravity

If we can help ourselves see the world in "new ways" why not allow ourselves such freedoms? See how it extends our views on what we have always "thought about" moves us beyond "the way" in which we have measured all things?


To “hear” the data we can map physical properties (The Data) to audible properties (The Sound) in pretty much any way we choose. For a physicist, an obvious way to do this might be to map speed to pitch. I think this is obvious for a physicist because both of these things are measured “per second” (pitch or frequency is measured in Hertz, which means vibrations per second). But we don’t have to do the obvious, we can map any physical property to any audible property.

In this example I’m going to map speed to the pitch of the note, length/postion to the duration of the note and number of turns/legs/puffs to the loudness of the note.

Now I have to choose starting positions and ranges. When I do this I have to consider that:
How to make sound out of anything.

Tuesday, November 23, 2010

The Synapse of the Wondering Mind

Click here for Penrose's Seminar

While trying to organize my thoughts about the title of this blog entry, it becomes apparent to me that the potential of neurological transposition of electrical pulses is part of the function of the physical system in order to operate, while I am thinking something much different.

It is the idea of our being receptive too something more then a signal transfer within the physical system of pathways established through repetitive use, but also the finding of that location, to receive.It is one where we can accept something into ourselves as information from another. As accepting information from around us. Information is energy?

***


Structure of a typical chemical synapse
In the nervous system, a synapse is a junction that permits a neuron to pass an electrical or chemical signal to another cell. The word "synapse" comes from "synaptein", which Sir Charles Scott Sherrington and colleagues coined from the Greek "syn-" ("together") and "haptein" ("to clasp").

Synapses are essential to neuronal function: neurons are cells that are specialized to pass signals to individual target cells, and synapses are the means by which they do so. At a synapse, the plasma membrane of the signal-passing neuron (the presynaptic neuron) comes into close apposition with the membrane of the target (postsynaptic) cell. Both the presynaptic and postsynaptic sites contain extensive arrays of molecular machinery that link the two membranes together and carry out the signaling process. In many synapses, the presynaptic part is located on an axon, but some presynaptic sites are located on a dendrite or soma.
There are two fundamentally different types of synapse:
  • In a chemical synapse, the presynaptic neuron releases a chemical called a neurotransmitter that binds to receptors located in the postsynaptic cell, usually embedded in the plasma membrane. Binding of the neurotransmitter to a receptor can affect the postsynaptic cell in a wide variety of ways.
  • In an electrical synapse, the presynaptic and postsynaptic cell membranes are connected by channels that are capable of passing electrical current, causing voltage changes in the presynaptic cell to induce voltage changes in the postsynaptic cell.

***

The Einstein-Podolsky-Rosen Argument in Quantum Theory

First published Mon May 10, 2004; substantive revision Wed Aug 5, 2009

In the May 15, 1935 issue of Physical Review Albert Einstein co-authored a paper with his two postdoctoral research associates at the Institute for Advanced Study, Boris Podolsky and Nathan Rosen. The article was entitled “Can Quantum Mechanical Description of Physical Reality Be Considered Complete?” (Einstein et al. 1935). Generally referred to as “EPR”, this paper quickly became a centerpiece in the debate over the interpretation of the quantum theory, a debate that continues today. The paper features a striking case where two quantum systems interact in such a way as to link both their spatial coordinates in a certain direction and also their linear momenta (in the same direction). As a result of this “entanglement”, determining either position or momentum for one system would fix (respectively) the position or the momentum of the other. EPR use this case to argue that one cannot maintain both an intuitive condition of local action and the completeness of the quantum description by means of the wave function. This entry describes the argument of that 1935 paper, considers several different versions and reactions, and explores the ongoing significance of the issues they raise. See Also:Historical Figures Lead Us to the Topic of Entanglement
When looking at Penrose's seminar and you have clicked on the image, the idea presented itself to me that if one was to seek "a method by determination" I might express color of gravity as a exchange in principle as if spooky action at a distance, as an expression of a representative example of colorimetric expressions.

Science and TA by Chris Boyd
Do we selectively ignore other models from artificial intelligence such as Zadeh's Fuzzy Logic? This is a logic used to model perception and used in newly designed "smart" cameras. Where standard logic must give a true or false value to every proposition, fuzzy logic assigns a certainty value between zero and one to each of the propositions, so that we say a statement is .7 true and .3 false. Is this theory selectively ignored to support our theories?

Here fuzzy logic and TA had served in principal to show orders between "O and 1" as potentials of connection between the source of exchange between those two individuals. I see "cryptography" as an example of this determination  as a defined state of reductionism through that exchange.

Stuart Kauffman raises his own philosophical ideas in "Beyond Einstein and Schrodinger? The Quantum Mechanics of Closed Quantum Systems" about such things,  that lead to further  ideas on his topic, has blocked my comments there, so I see no use in further participating and offering ideas for his efforts toward "data mining" with regard to his biological methods to determination.

I can say it has sparked further interest in my own assessment of "seeking to understand color of gravity" as a method to determination,  as a state of deduction orientation, that we might get from a self evidential result from exchange,  as a "cause of determination" as to our futures.

While I have listed here between two individuals these thoughts also act as "an antennae" toward a universal question of "what one asks shall in some form be answered."

Not just a "blank slate" but one with something written on it. What design then predates physical expression, as if one could now define the human spirit and character, as  the soul in constant expression through materiality? An "evolution of spirit" then making manifest our progressions, as leading from one position to another.


***
See Also:

The Synapse is a Portal of the Thinking Mind

Sunday, November 14, 2010

Gravimetry

For the chemical analysis technique, see Gravimetric analysis.


Gravity map of the Southern Ocean around the Antarctic continent
Author-Hannes Grobe, AWI

This gravity field was computed from sea-surface height measurements collected by the US Navy GEOSAT altimeter between March, 1985, and January, 1990. The high density GEOSAT Geodetic Mission data that lie south of 30 deg. S were declassified by the Navy in May of 1992 and contribute most of the fine-scale gravity information.

The Antarctic continent itself is shaded in blue depending on the thickness of the ice sheet (blue shades in steps of 1000 m); light blue is shelf ice; gray lines are the major ice devides; pink spots are parts of the continent which are not covered by ice; gray areas have no data.
Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of gravitational field or the properties of matter responsible for its creation are of interest. The term gravimetry or gravimetric is also used in chemistry to define a class of analytical procedures, called gravimetric analysis relying upon weighing a sample of material.

Contents

Units of measurement

Gravity is usually measured in units of acceleration. In the SI system of units, the standard unit of acceleration is 1 metre per second squared (abbreviated as m/s2). Other units include the gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (gn), equal to 9.80665 m/s2. The value of the gn approximately equals the acceleration due to gravity at the Earth's surface (although the actual acceleration g varies fractionally from place to place).

How gravity is measured

An instrument used to measure gravity is known as a gravimeter, or gravitometer. Since general relativity regards the effects of gravity as indistinguishable from the effects of acceleration, gravimeters may be regarded as special purpose accelerometers. Many weighing scales may be regarded as simple gravimeters. In one common form, a spring is used to counteract the force of gravity pulling on an object. The change in length of the spring may be calibrated to the force required to balance the gravitational pull. The resulting measurement may be made in units of force (such as the newton), but is more commonly made in units of gals.

More sophisticated gravimeters are used when precise measurements are needed. When measuring the Earth's gravitational field, measurements are made to the precision of microgals to find density variations in the rocks making up the Earth. Several types of gravimeters exist for making these measurements, including some that are essentially refined versions of the spring scale described above. These measurements are used to define gravity anomalies.

Besides precision, also stability is an important property of a gravimeter, as it allows the monitoring of gravity changes. These changes can be the result of mass displacements inside the Earth, or of vertical movements of the Earth's crust on which measurements are being made: remember that gravity decreases 0.3 mGal for every metre of height. The study of gravity changes belongs to geodynamics.

The majority of modern gravimeters use specially-designed quartz zero-length springs to support the test mass. Zero length springs do not follow Hooke's Law, instead they have a force proportional to their length. The special property of these springs is that the natural resonant period of oscillation of the spring-mass system can be made very long - approaching a thousand seconds. This detunes the test mass from most local vibration and mechanical noise, increasing the sensitivity and utility of the gravimeter. The springs are quartz so that magnetic and electric fields do not affect measurements. The test mass is sealed in an air-tight container so that tiny changes of barometric pressure from blowing wind and other weather do not change the buoyancy of the test mass in air.

Spring gravimeters are, in practice, relative instruments which measure the difference in gravity between different locations. A relative instrument also requires calibration by comparing instrument readings taken at locations with known complete or absolute values of gravity. Absolute gravimeters provide such measurements by determining the gravitational acceleration of a test mass in vacuum. A test mass is allowed to fall freely inside a vacuum chamber and its position is measured with a laser interferometer and timed with an atomic clock. The laser wavelength is known to ±0.025 ppb and the clock is stable to ±0.03 ppb as well. Great care must be taken to minimize the effects of perturbing forces such as residual air resistance (even in vacuum) and magnetic forces. Such instruments are capable of an accuracy of a few parts per billion or 0.002 mGal and reference their measurement to atomic standards of length and time. Their primary use is for calibrating relative instruments, monitoring crustal deformation, and in geophysical studies requiring high accuracy and stability. However, absolute instruments are somewhat larger and significantly more expensive than relative spring gravimeters, and are thus relatively rare.

Gravimeters have been designed to mount in vehicles, including aircraft, ships and submarines. These special gravimeters isolate acceleration from the movement of the vehicle, and subtract it from measurements. The acceleration of the vehicles is often hundreds or thousands of times stronger than the changes being measured. A gravimeter (the Lunar Surface Gravimeter) was also deployed on the surface of the moon during the Apollo 17 mission, but did not work due to a design error. A second device (the Traverse Gravimeter Experiment) functioned as anticipated.

Microgravimetry

Microgravimetry is a rising and important branch developed on the foundation of classical gravimetry.

Microgravity investigations are carried out in order to solve various problems of engineering geology, mainly location of voids and their monitoring. Very detailed measurements of high accuracy can indicate voids of any origin, provided the size and depth are large enough to produce gravity effect stronger than is the level of confidence of relevant gravity signal.

History

The modern gravimeter was developed by Lucien LaCoste and Arnold Romberg in 1936.

They also invented most subsequent refinements, including the ship-mounted gravimeter, in 1965, temperature-resistant instruments for deep boreholes, and lightweight hand-carried instruments. Most of their designs remain in use (2005) with refinements in data collection and data processing.

See also

Saturday, November 06, 2010

Colour of Gravity 3

Colour measurement

We know that colour is a psychophysical experience of an observer which changes from observer to observer and is therefore impossible to replicate absolutely. In order to quantify colour in meaningful terms we must be able to measure or represent the three attributes that together give a model of colour perception. i.e. light, object and the eye. All these attributes have been standardised by the CIE or Commission Internationale de l'Eclairage.

The colours of the clothes we wear and the textiles we use in our homes must be monitored to ensure that they are correct and consistent.

Colour measurement is therefore essential to put numbers to colour in order to remove physical samples and the interpretation of results.
See:Colour measuring equipment

***

A New Culture?





***

Colour Space and Colour Theory


So by having defined the "frame of reference," and by introducing "Colour of gravity" I thought it important and consistent with the science to reveal how dynamical any point within that reference can become expressive. The history in association also important.

  ***
 

See Also:

Cymatics and the Heart Song

We might object that the heart makes heart sounds and jiggles water in the pericardial sac. Stuart Kauffman

The Colour of Gravity2
The Colour of Gravity1

Tuesday, February 23, 2010

Calorimetric Equivalence Principle Test

With Stefan shutting down the blog temporary I thought to gather my thoughts here.

Gravitomagnetism

This approximate reformulation of gravitation as described by general relativity makes a "fictitious force" appear in a frame of reference different from a moving, gravitating body. By analogy with electromagnetism, this fictitious force is called the gravitomagnetic force, since it arises in the same way that a moving electric charge creates a magnetic field, the analogous "fictitious force" in special relativity. The main consequence of the gravitomagnetic force, or acceleration, is that a free-falling object near a massive rotating object will itself rotate. This prediction, often loosely referred to as a gravitomagnetic effect, is among the last basic predictions of general relativity yet to be directly tested.
Indirect validations of gravitomagnetic effects have been derived from analyses of relativistic jets. Roger Penrose had proposed a frame dragging mechanism for extracting energy and momentum from rotating black holes.[2] Reva Kay Williams, University of Florida, developed a rigorous proof that validated Penrose's mechanism.[3] Her model showed how the Lense-Thirring effect could account for the observed high energies and luminosities of quasars and active galactic nuclei; the collimated jets about their polar axis; and the asymmetrical jets (relative to the orbital plane).[4] All of those observed properties could be explained in terms of gravitomagnetic effects.[5] Williams’ application of Penrose's mechanism can be applied to black holes of any size.[6] Relativistic jets can serve as the largest and brightest form of validations for gravitomagnetism.
A group at Stanford University is currently analyzing data from the first direct test of GEM, the Gravity Probe B satellite experiment, to see if they are consistent with gravitomagnetism.


A group at Stanford University is currently analyzing data from the first direct test of GEM, the Gravity Probe B satellite experiment, to see if they are consistent with gravitomagnetism.

While I am not as progressed in terms of the organization of your thought process(inexperience in terms of the education) I am holding the ideas of Mendeleev in mind as I look at this topic you've gathered. And Newton as well, but not in the way one might have deferred to as the basis if gravity research.

It is more on the idea of what we can create in reality given all the elements at our disposal. This is also the same idea in mathematics that all the information is there and only has t be discovered. Such a hierarchy in thinking is also the idea of geometrical presence stretched to higher dimensions, as one would point to mater assmptins as t a higher order preset in the development of the material of earth as to the planet.

***

Uncle Al,

Overview:A parity calorimetry test offers a 33,000-fold improvement in EP anomaly sensitivity in only two days of measurements.

we are not so different....that this quest may not be apparent for many, yet it is a simple question about what is contracted to help understand "principals of formation" had been theoretically developed in terms of the genus figures(Stanley Mandelstam) that we understand that this progression mathematically has been slow.

So we scientifically build this experimental progression.

But indeed, it's a method in terms of moving from "the false vacuum to the true?" What is the momentum called toward materialization?

Such an emergent feature while discussing some building block model gives some indication of a "higher order principal" that is not clearly understood, while from a condense matter theorist point of view, this is a emergent feature?

Best,

Bordeaux, France is 44.83 N

http://www.mazepath.com/uncleal/lajos.htm#b7
***

According to general relativity, the gravitational field produced by a rotating object (or any rotating mass-energy) can, in a particular limiting case, be described by equations that have the same form as the magnetic field in classical electromagnetism. Starting from the basic equation of general relativity, the Einstein field equation, and assuming a weak gravitational field or reasonably flat spacetime, the gravitational analogs to Maxwell's equations for electromagnetism, called the "GEM equations", can be derived. GEM equations compared to Maxwell's equations in SI are:[7] [8][9][10]

GEM equations Maxwell's equations
 \nabla \cdot \mathbf{E}_\text{g} = -4 \pi G \rho \  \nabla \cdot \mathbf{E} =  \frac{\rho_\text{em}}{\epsilon_0} \
 \nabla \cdot \mathbf{B}_\text{g} = 0 \  \nabla \cdot \mathbf{B} = 0 \
 \nabla \times \mathbf{E}_\text{g} = -\frac{\partial \mathbf{B}_\text{g} } {\partial t} \  \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B} } {\partial t} \
 \nabla \times \mathbf{B}_\text{g} = -\frac{4 \pi G}{c^2} \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}_\text{g}} {\partial t}  \nabla \times \mathbf{B} = \frac{1}{\epsilon_0 c^2} \mathbf{J}_\text{em} + \frac{1}{c^2} \frac{\partial \mathbf{E}} {\partial t}

where:

Tuesday, October 27, 2009

New Synesthete Character on Heroes

For example, in 1704 Sir Isaac Newton struggled to devise mathematical formulas to equate the vibrational frequency of sound waves with a corresponding wavelength of light. He failed to find his hoped-for translation algorithm, but the idea of correspondence took root, and the first practical application of it appears to be the clavecin oculaire, an instrument that played sound and light simultaneously. It was invented in 1725. Charles Darwin’s grandfather, Erasmus, achieved the same effect with a harpsichord and lanterns in 1790, although many others were built in the intervening years, on the same principle, where by a keyboard controlled mechanical shutters from behind which colored lights shine. By 1810 even Goethe was expounding correspondences between color and other senses in his book, Theory of Color. Pg 53, The Man Who Tasted Shapes, by Richard E. Cytowic, M.D.

I had been searching for the latest TV Show on Heroes.

I finally came across somebody who pretty well sees it the way Synesthesis  does?  A fictional TV show cut forYoutube which provided for reference below which was what I was looking for.


Now the followers of this blog must know by now, that I see the "Colour of Gravity" as a link between what can conceptually transpire when the photon is travelling through, or "showing itself" in a gravitational field.

Now, what is right scientifically on this, that what we can say of theoretics which has combined electromagnetism with gravity, is to reveal "a colourful gravitational history" in this way? It brought to mind a dream I had of Einstein stirring a glass container of juice with ice in it. In my cognisance of how sound would reveal and be indicative of gravity speaking, I look to see what Einstein meant by display.

This was triggered I believe by  Joseph Weber's research into the aluminum bars detectors for gravitational wave detection.

Gravitational Wave Detectors are Best Described as "Sounds."

 


Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...

Some might not understand the history to which I had devoted to building and understanding the emotive qualities combined with the intellectual. Which lead to seeing dynamical movement between the inner and outer world with respect to the state of mind at any given time. There have always been attempts on my part to describe this motion, not just on the psychological level, but on what also transpires emotively while the emotive state is being expressed.

I cannot say I am a Synesthesis by the 61 definitions given by Sean Day. So in the truest sense, I am not by that definition one. But conceptually linking and intertwining sound and colour with the physiological and the psychological, it was important by that definition be given, what colourful state the mind can be in.

Albert Einstein's perception of time and beauty seemed relevant to me about the quality given in measure, but by this perspective I am sure that is not what Einstein wanted to give meaning too, while thinking of the curvature of space and time.

This then is based on a perspective I have formed around gravity. What attach itself to all of us, whether we see the colours or not by consequence. This is an evolutionary form in my mind of what the soul can gain and loose by recognizing the colourful state of mind at any given time, and how it harbours colour in the truest sense as an expression of that being.

To be left with "no physical form" a mode of being becomes a retention of the abstract thinking mind, sets a tone in my mind for what is to come home to roost.

That we exist then mentally in that very realm, means to learn to recognize the pain and the "duration of time" we associated with those given memories. Upon reflection, we learn something then about the way we relate to the world and people around us which allows us to project "forward future consequences" intellectually bound by creative advances in language construction advancements of "creating in the mental world."

IN the most purest sense then, all combined is the birthing to segregation of sensory abilities according to "cabinets of perspective" that are arranged according to the principals of how we will interact in this community. This by arrangement, on entering materiality.

See:Emotion and Reason Balanced: The Mind's Consequence?

See Also: Art and Science: Kandinsky

Monday, October 12, 2009

Universality Can Lead too, Isostatic Adjustment


Pressure and heat melts protons and neutrons into a new state of matter - the quark gluon plasma.


Now you must know that this entry holds philosophical perspective and is the mandate of Night Light Mining Company to explore the potentials of planetary and geological data gained from scientific analysis to help the society of earth to move farther out into space, and to colonize.

Why are Planets Round?

It is always interesting to see water in space.

Image: NASA/JPL-
Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes.



I wanted to explore the philosophical bend first, as it sets the tone for analysis not only of the potentials of planets but of what we can gained from understanding the place of values we can set around ourselves.


Two-dimensional analogy of space–time distortion. Matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity. White lines do not represent the curvature of space but instead represent the coordinate system imposed on the curved spacetime, which would be rectilinear in a flat spacetime. See: Spacetime


Be it known then, that such universality can exist in principle around this "central core" that such equatorial measures are distinctive and related to the equatorial possibility of Inverse Square Law, that as a mathematical principle, this is brought to bear on how we solidify the substance of the elemental table, that we can say, indeed, that such values can be assigned in "refractive light" to values which are built to become "round in planetary constitution."



The life cycle of a lunar impact and associated time and special scales. The LCROSS measurement methods are “layered” in response to the rapidly evolving impact environment. See: Impact:Lunar CRater Observation Satellite (LCROSS)



It becomes an evolutionary discourse then about what began from universality "in principle" can become such a state as evident in the framework of elemental consideration, that one might say indeed that it is "this constitution" that will signify the relevance to the spacetime fabric and it's settled orbit.

***


See Also:

Isostatic Adjustment is Why Planets are Round?

Centroids