From Wikipedia, the free encyclopedia
The
theory of everything (
TOE) is a putative
theory of
theoretical physics that fully explains and links together all known physical phenomena, and, ideally, has predictive power for the outcome of
any experiment that could be carried out
in principle. Initially, the term was used with an ironic connotation to refer to various overgeneralized theories. For example, a greatgrandfather of
Ijon Tichy—a character from a cycle of
Stanisław Lem's
science fiction stories of the 1960s—was known to work on the "General Theory of Everything". Physicist
John Ellis^{[1]} claims to have introduced the term into the technical literature in an article in
Nature in 1986.
^{[2]} Over time, the term stuck in popularizations of
quantum physics to describe a theory that would unify or explain through a single model the theories of all
fundamental interactions of nature.
There have been many theories of everything proposed by theoretical physicists over the last century, but none has been confirmed experimentally. The primary problem in producing a TOE is that the accepted theories of
quantum mechanics and
general relativity are hard to combine. Their mutual incompatibility argues that they are incomplete, or at least not fully understood taken individually. (For more, see
unsolved problems in physics).
Based on theoretical
holographic principle arguments from the 1990s, many physicists believe that 11dimensional
Mtheory, which is described in many sectors by
matrix string theory, in many other sectors by
perturbative string theory is the complete theory of everything, although there is no widespread consensus and Mtheory is not a completed theory but rather an approach for producing one.
Historical antecedents
Laplace famously suggested that a
sufficiently powerful intellect could, if it knew the position and velocity of every particle at a given time, along with the laws of nature, calculate the position of any particle at any other time:
An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.
— Essai philosophique sur les probabilités, Introduction. 1814
Although modern
quantum mechanics suggests that
uncertainty is inescapable, a unifying theory governing probabilistic assignments may nevertheless exist.
Ancient Greece to Einstein
Since
ancient Greek times,
philosophers have speculated that the apparent diversity of appearances conceals an underlying unity, and thus that the list of forces might be short, indeed might contain only a single entry. For example, the
mechanical philosophy of the 17th century posited that all forces could be ultimately reduced to
contact forces between tiny solid particles.
^{[3]} This was abandoned after the acceptance of
Isaac Newton's longdistance force of gravity; but at the same time, Newton's work in his
Principia provided the first dramatic empirical evidence for the unification of apparently distinct forces:
Galileo's work on terrestrial gravity,
Kepler's laws of planetary motion, and the phenomenon of
tides were all quantitatively explained by a single law of
universal gravitation.
In 1820,
Hans Christian Ørsted discovered a connection between electricity and magnetism, triggering decades of work that culminated in
James Clerk Maxwell's theory of
electromagnetism. Also during the 19th and early 20th centuries, it gradually became apparent that many common examples of forces—contact forces,
elasticity,
viscosity,
friction,
pressure—resulted from electrical interactions between the smallest particles of matter. In the late 1920s, the new quantum mechanics showed that the
chemical bonds between
atoms were examples of (quantum) electrical forces, justifying
Dirac's boast that "the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known".
^{[4]}
Attempts to unify
gravity with electromagnetism date back at least to
Michael Faraday's experiments of 1849–50.
^{[5]} After
Albert Einstein's theory of gravity (
general relativity) was published in 1915, the search for a
unified field theory combining gravity with electromagnetism began in earnest. At the time, it seemed plausible that no other fundamental forces exist. Prominent contributors were
Gunnar Nordström,
Hermann Weyl,
Arthur Eddington,
Theodor Kaluza,
Oskar Klein, and most notably, many attempts by Einstein and his collaborators. In his last years, Albert Einstein was intensely occupied in finding such a unifying theory. None of these attempts were successful.
^{[6]}
New discoveries
The search for a unifying theory was interrupted by the discovery of the
strong and
weak nuclear forces, which could not be subsumed into either gravity or electromagnetism. A further hurdle was the acceptance that quantum mechanics had to be incorporated from the start, rather than emerging as a consequence of a deterministic unified theory, as Einstein had hoped. Gravity and electromagnetism could always peacefully coexist as entries in a list of Newtonian forces, but for many years it seemed that gravity could not even be incorporated into the quantum framework, let alone unified with the other fundamental forces. For this reason, work on unification for much of the twentieth century, focused on understanding the three "quantum" forces: electromagnetism and the weak and strong forces. The first two were
unified in 1967–68 by
Sheldon Glashow,
Steven Weinberg, and
Abdus Salam as the "electroweak" force.
^{[7]} However, while the strong and electroweak forces peacefully coexist in the
Standard Model of particle physics, they remain distinct. Several
Grand Unified Theories (GUTs) have been proposed to unify them. Although the simplest GUTs have been experimentally ruled out, the general idea, especially when linked with
supersymmetry, remains strongly favored by the theoretical physics community.
^{[8]}
Modern physics
In current mainstream physics, a Theory of Everything would unify all the
fundamental interactions of nature, which are usually considered to be four in number:
gravity, the
strong nuclear force, the
weak nuclear force, and the
electromagnetic force. Because the weak force can transform
elementary particles from one kind into another, the TOE should yield a deep understanding of the various different kinds of particles as well as the different forces. The expected pattern of theories is:
In addition to the forces listed here, modern
cosmology might require an
inflationary force,
dark energy, and also
dark matter composed of fundamental particles outside the scheme of the standard model. The existence of these has not been proven and there are alternative theories such as
modified Newtonian dynamics.
^{[citation needed]}
Electroweak unification is a
broken symmetry: the electromagnetic and weak forces appear distinct at low energies because the particles carrying the weak force, the
W and Z bosons, have a mass of about 100 GeV, whereas the
photon, which carries the electromagnetic force, is massless. At higher energies Ws and Zs can be
created easily and the unified nature of the force becomes apparent. Grand unification is expected to work in a similar way, but at energies of the order of 10
^{16} GeV, far greater than could be reached by any possible Earthbased
particle accelerator. By analogy, unification of the GUT force with gravity is expected at the
Planck energy, roughly 10
^{19} GeV.
It may seem premature to be searching for a TOE when there is as yet no direct evidence for an electronuclear force, and while in any case there are many different proposed GUTs. In fact the name deliberately suggests the
hubris involved. Nevertheless, most physicists believe this unification is possible, partly due to the past history of convergence towards a single theory. Supersymmetric GUTs seem plausible not only for their theoretical "beauty", but because they naturally produce large quantities of dark matter, and the inflationary force may be related to GUT physics (although it does not seem to form an inevitable part of the theory). And yet GUTs are clearly not the final answer. Both the current standard model and proposed GUTs are
quantum field theories which require the problematic technique of
renormalization to yield sensible answers. This is usually regarded as a sign that these are only
effective field theories, omitting crucial phenomena relevant only at very high energies. Furthermore, the inconsistency between quantum mechanics and general relativity implies that one or both of these must be replaced by a theory incorporating
quantum gravity.
The mainstream theory of everything at the moment is
superstring theory /
Mtheory; current research on
loop quantum gravity may eventually play a fundamental role in a TOE, but that is not its primary aim.
^{[9]} These theories attempt to deal with the renormalization problem by setting up some lower bound on the length scales possible. String theories and
supergravity (both believed to be limiting cases of the yettobedefined Mtheory) suppose that the universe actually has more dimensions than the easily observed three of space and one of time. The motivation behind this approach began with the
KaluzaKlein theory in which it was noted that applying general relativity to a five dimensional universe (with the usual four dimensions plus one small curledup dimension) yields the equivalent of the usual general relativity in four dimensions together with
Maxwell's equations (electromagnetism, also in four dimensions). This has led to efforts to work with theories with large number of dimensions in the hopes that this would produce equations that are similar to known laws of physics. The notion of extra dimensions also helps to resolve the hierarchy problem, which is the question of why gravity is so much weaker than any other force. The common answer involves gravity leaking into the extra dimensions in ways that the other forces do not.
^{[citation needed]}
In the late 1990s, it was noted that one problem with several of the candidates for theories of everything (but particularly string theory) was that they did not constrain the characteristics of the predicted universe. For example, many theories of quantum gravity can create universes with arbitrary numbers of dimensions or with arbitrary
cosmological constants. Even the "standard" tendimensional string theory allows the "curled up" dimensions to be
compactified in an enormous number of different ways (one estimate is 10
^{500} ) each of which corresponds to a different collection of fundamental particles and lowenergy forces. This array of theories is known as the
string theory landscape.
A speculative solution is that many or all of these possibilities are realised in one or another of a huge number of universes, but that only a small number of them are habitable, and hence the fundamental constants of the universe are ultimately the result of the
anthropic principle rather than a consequence of the theory of everything. This anthropic approach is often criticised
^{[who?]} in that, because the theory is flexible enough to encompass almost any observation, it cannot make useful (as in original, falsifiable, and verifiable) predictions. In this view, string theory would be considered a
pseudoscience, where an unfalsifiable theory is constantly adapted to fit the experimental results.
With reference to Gödel's incompleteness theorem
A small number of scientists claim that
Gödel's incompleteness theorem proves that any attempt to construct a TOE is bound to fail. Gödel's theorem, informally stated, asserts that any formal theory expressive enough for elementary arithmetical facts to be expressed and strong enough for them to be proved is either inconsistent (both a statement and its denial can be derived from its axioms) or incomplete, in the sense that there is a true statement about natural numbers that can't be derived in the formal theory. In his 1966 book
The Relevance of Physics,
Stanley Jaki pointed out that, because any "theory of everything" will certainly be a consistent nontrivial mathematical theory, it must be incomplete. He claims that this dooms searches for a deterministic theory of everything.
^{[10]} In a later reflection, Jaki states that it is wrong to say that a final theory is impossible, but rather that "when it is on hand one cannot know rigorously that it is a final theory."
^{[11]}
Freeman Dyson has stated that
“  Gödel’s theorem implies that pure mathematics is inexhaustible. No matter how many problems we solve, there will always be other problems that cannot be solved within the existing rules. [...] Because of Gödel's theorem, physics is inexhaustible too. The laws of physics are a finite set of rules, and include the rules for doing mathematics, so that Gödel's theorem applies to them.  ” 
—NYRB, May 13, 2004 
Stephen Hawking was originally a believer in the Theory of Everything but, after considering Gödel's Theorem, concluded that one was not obtainable.
“  Some people will be very disappointed if there is not an ultimate theory, that can be formulated as a finite number of principles. I used to belong to that camp, but I have changed my mind.  ” 

Jürgen Schmidhuber (1997) has argued against this view; he points out that Gödel's theorems are irrelevant for
computable physics.
^{[12]} In 2000, Schmidhuber explicitly constructed limitcomputable, deterministic universes whose
pseudorandomness based on
undecidable, Gödellike
halting problems is extremely hard to detect but does not at all prevent formal TOEs describable by very few bits of information.
^{[13]}^{[14]}
Related critique was offered by
Solomon Feferman,
^{[15]} among others. Douglas S. Robertson offers
Conway's game of life as an example:
^{[16]} The underlying rules are simple and complete, but there are formally undecidable questions about the game's behaviors. Analogously, it may (or may not) be possible to completely state the underlying rules of physics with a finite number of welldefined laws, but there is little doubt that there are questions about the behavior of physical systems which are formally undecidable on the basis of those underlying laws.
Since most physicists would consider the statement of the underlying rules to suffice as the definition of a "theory of everything", these researchers argue that Gödel's Theorem does
not mean that a TOE cannot exist. On the other hand, the physicists invoking Gödel's Theorem appear, at least in some cases, to be referring not to the underlying rules, but to the understandability of the behavior of all physical systems, as when Hawking mentions arranging blocks into rectangles, turning the computation of
prime numbers into a physical question.
^{[17]} This definitional discrepancy may explain some of the disagreement among researchers.
Another approach to working with the limits of logic implied by Gödel's incompleteness theorems is to abandon the attempt to model reality using a formal system altogether. Process Physics
^{[18]} is a notable example of a candidate TOE that takes this approach, where reality is modeled using selforganizing (purely semantic) information.
Potential status of a theory of everything
No physical theory to date is believed to be precisely accurate. Instead, physics has proceeded by a series of "successive approximations" allowing more and more accurate predictions over a wider and wider range of phenomena. Some physicists believe that it is therefore a mistake to confuse theoretical models with the true nature of reality, and hold that the series of approximations will never terminate in the "truth". Einstein himself expressed this view on occasions.
^{[19]} On this view, we may reasonably hope for
a theory of everything which selfconsistently incorporates all currently known forces, but should not expect it to be the final answer. On the other hand it is often claimed that, despite the apparently everincreasing complexity of the mathematics of each new theory, in a deep sense associated with their underlying
gauge symmetry and the number of
fundamental physical constants, the theories are becoming simpler. If so, the process of simplification cannot continue indefinitely.
There is a philosophical debate within the physics community as to whether a theory of everything deserves to be called
the fundamental law of the universe.
^{[20]} One view is the hard
reductionist position that the TOE is the fundamental law and that all other theories that apply within the universe are a consequence of the TOE. Another view is that
emergent laws (called "free floating laws" by
Steven Weinberg^{[citation needed]}), which govern the behavior of
complex systems, should be seen as equally fundamental. Examples are the
second law of thermodynamics and the theory of
natural selection. The point being that, although in our universe these laws describe systems whose behaviour could ("in principle") be predicted from a TOE, they would also hold in universes with different lowlevel laws, subject only to some very general conditions. Therefore it is of no help, even in principle, to invoke lowlevel laws when discussing the behavior of complex systems. Some
^{[who?]} argue that this attitude would violate
Occam's Razor if a completely valid TOE were formulated. It is not clear that there is any point at issue in these debates (e.g., between Steven Weinberg and
Philip Anderson^{[citation needed]}) other than the right to apply the highstatus word "fundamental" to their respective subjects of interest.
Although the name "theory of everything" suggests the determinism of Laplace's quotation, this gives a very misleading impression. Determinism is frustrated by the probabilistic nature of quantum mechanical predictions, by the extreme sensitivity to initial conditions that leads to
mathematical chaos, and by the extreme mathematical difficulty of applying the theory. Thus, although the current standard model of particle physics "in principle" predicts all known nongravitational phenomena, in practice only a few quantitative results have been derived from the full theory (e.g., the masses of some of the simplest
hadrons), and these results (especially the particle masses which are most relevant for lowenergy physics) are less accurate than existing experimental measurements. The true TOE would almost certainly be even harder to apply. The main motive for seeking a TOE, apart from the pure intellectual satisfaction of completing a centurieslong quest, is that all prior successful unifications have predicted new phenomena, some of which (e.g.,
electrical generators) have proved of great practical importance. As in other cases of theory reduction, the TOE would also allow us to confidently define the domain of validity and residual error of lowenergy approximations to the full theory which could be used for practical calculations.
Some of the biggest problems facing current TOE attempts are related to Einstein's theories of relativity. None of the current attempted TOEs give a structure of matter that gives rise to the special relativity corrections to mass, length and time when a particle moves. Those corrections are just imposed as if it is some unknown property of space. Also Einstein introduced an approximation when he derived his gravitational field equations in his general theory of relativity.
^{[21]} Trying to match a theory to an approximation is always going to be difficult. It is believed
^{[who?]} that success will be easier when those two factors are taken into consideration.
Theory of everything and philosophy
The status of a physical TOE is open to
philosophical debate. For example, if
physicalism is true, a physical TOE will coincide with a philosophical theory of everything. Some philosophers (
Aristotle,
Plato,
Hegel,
Whitehead, et al.) have attempted to construct allencompassing systems. Others are highly dubious about the very possibility of such an exercise.
Stephen Hawking wrote in
A Brief History of Time that even if we had a TOE, it would necessarily be a set of equations. He wrote, “What is it that breathes fire into the equations and makes a universe for them to describe?”
^{[22]}. Of course, the ultimate irreducible brute fact would then be "why those equations?" One possible solution to the last question might be to adopt the point of view of
ultimate ensemble, or
modal realism, and say that those equations are not unique.
See also
References
 ^ Ellis, John (2002). "Physics gets physical (correspondence)". Nature 415: 957.
 ^ Ellis, John (1986). "The Superstring: Theory of Everything, or of Nothing?". Nature 323: 595–598. doi:10.1038/323595a0.
 ^ Shapin, Steven (1996). The Scientific Revolution. University of Chicago Press. ISBN 0226750213.
 ^ Dirac, P.A.M. (1929). "Quantum mechanics of manyelectron systems". Proceedings of the Royal Society of London A 123: 714. doi:10.1098/rspa.1929.0094.
 ^ Faraday, M. (1850). "Experimental Researches in Electricity. TwentyFourth Series. On the Possible Relation of Gravity to Electricity". Abstracts of the Papers Communicated to the Royal Society of London 5: 994–995. doi:10.1098/rspl.1843.0267.
 ^ Pais (1982), Ch. 17.
 ^ Weinberg (1993), Ch. 5
 ^ There is one GUT not linked to super symmetry that has not been eliminated by experiment. That is the four universe theory of George Ryazanov. It has been tested once in a lab at Hebrew University informally. The results were reported to be positive. But the test has not been repeated elsewhere. See http://georgeryazanov.com/book4/03Physics_of_Unity.html. However Ryazanov's theory does involve Lorentz violation. If the Fermi Glast project does not find Lorentz violation, this will be a blow to the Ryazanov Theory.
 ^ Potter, Franklin (15 February 2005). "Leptons And Quarks In A Discrete Spacetime". Frank Potter's Science Gems. http://www.sciencegems.com/discretespace.pdf. Retrieved 20091201.
 ^ Jaki, S.L. (1966). The Relevance of Physics. Chicago Press.
 ^ Stanley L. Jaki (2004) "A Late Awakening to Gödel in Physics," p. 89.
 ^ Schmidhuber, Jürgen (1997). A Computer Scientist's View of Life, the Universe, and Everything. Lecture Notes in Computer Science. Springer. pp. 201–208. doi:10.1007/BFb0052071. ISBN 9783540637462. http://www.idsia.ch/~juergen/everything/.
 ^ Schmidhuber, Jürgen (2000). "Algorithmic Theories of Everything". arΧiv:quantph/0011122 [quantph].
 ^ Schmidhuber, Jürgen (2002). "Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit". International Journal of Foundations of Computer Science 13 (4): 587–612. doi:10.1142/S0129054102001291.
 ^ Feferman, Solomon (17 November 2006). "The nature and significance of Gödel’s incompleteness theorems". Institute for Advanced Study. http://math.stanford.edu/~feferman/papers/GodelIAS.pdf. Retrieved 20090112.
 ^ Robertson, Douglas S. (2007). "Goedel’s Theorem, the Theory of Everything, and the Future of Science and Mathematics". Complexity 5: 22–27. doi:10.1002/10990526(200005/06)5:5<22::AIDCPLX4>3.0.CO;20.
 ^ Hawking, Stephen (20 July 2002). "Gödel and the end of physics". http://www.damtp.cam.ac.uk/strings02/dirac/hawking/. Retrieved 20091201.
 ^ Cahill, Reginald (2003). "Process Physics". Process Studies Supplement. Center for Process Studies. pp. 1–131. http://www.ctr4process.org/publications/ProcessStudies/PSS/20035CahillRProcess_Physics.shtml. Retrieved 20090714.
 ^ Einstein, letter to Felix Klein, 1917. (On determinism and approximations.) Quoted in Pais (1982), Ch. 17.
 ^ Weinberg (1993), Ch 2.
 ^ Equation 20 in Einstein, Albert (1916), "Die Grunlage der allgemeinen Relativätstheorie", Annalen der Physik 49: 769
 ^ as quoted in [Artigas, The Mind of the Universe, p.123]
 John D. Barrow, Theories of Everything: The Quest for Ultimate Explanation (OUP, Oxford, 1990) ISBN 009998380X
 Stephen Hawking 'The Theory of Everything: The Origin and Fate of the Universe' is an unauthorized 2002 book taken from recorded lectures (ISBN 1893224791)
 Stanley Jaki OSB, 2005. The Drama of Quantities. Real View Books (ISBN 189254847X)
 Abraham Pais Subtle is the Lord...: The Science and the Life of Albert Einstein (OUP, Oxford, 1982). ISBN 019853907X
 John Thompson "Nature's Watchmaker: The Undiscovered Miracle of Time". (Blackhall Publishing Ltd. Ireland, 2009) ISBN 1842181742 [1]
 Steven Weinberg Dreams of a Final Theory: The Search for the Fundamental Laws of Nature (Hutchinson Radius, London, 1993) ISBN 0091773954
 "At War With Odds: The Theory of Everything" (Roads, 2009)[2]
External links