Showing posts with label Allotrope. Show all posts
Showing posts with label Allotrope. Show all posts

Saturday, November 01, 2014

Consciousness as a Derivative of Reductionism?

The idea of a smallest length fell in line with the question of a measure as a derivative of reductionism with regard to consciousness. Going to length, the idea of a fundamental reality works its way into how a approach to consciousness is sought as some fundamental unit.
 The science and history of the minimal length has now been covered in a recent book by Amit Hagar:

Amit is a philosopher but he certainly knows his math and physics. Indeed, I suspect the book would be quite hard to understand for a reader without at least some background knowledge in math and physics. Amit has made a considerable effort to address the topic of a fundamental length from as many perspectives as possible, and he covers a lot of scientific history and philosophical considerations that I had not previously been aware of. The book is also noteworthy for including a chapter on quantum gravity phenomenology. See:Backreaction
Is there a smallest length?

The basis of this examination is to deduce whether or not there are fundamental units with regard to consciousness. This topic as it began as a question had been begun on a different forum in order to develope insight to this very question.

As an INTJ personality I have little patience for those who might get in the way of what I am seeking to accomplish.

Materialism is a form of philosophical monism which holds that matter is the fundamental substance in nature, and that all phenomena, including mental phenomena and consciousness, are the result of material interactions.
Materialism is closely related to physicalism; the view that all that exists is ultimately physical. Philosophical physicalism has evolved from materialism with the discoveries of the physical sciences to incorporate far more sophisticated notions of physicality than mere ordinary matter, such as: spacetimephysical energies and forcesdark matter, and so on. Thus the term "physicalism" is preferable over "materialism", while others use the terms as if they are synonymous.

I sought to explain that there is a limit with which the word measure could be applied and going toward a historical explanation of this demonstrates the responsibility that was put forth in this effort.
"I regard consciousness as fundamental. I regard matter as a derivative of consciousness. We cannot get behind consciousness. Everything we talk about, everything that we regard as existing, postulates consciousness. Max Planck

So insightful to the progress is and was to identify a means with which consciousness "as experience" may have had some definition as to "being" the reducible element. So quickly cutting to the heart of the issue is whether measure could have been explained as a function? IN this case as said experience become that factor.

 I suggest that a theory of consciousness should take experience as fundamental. We know that a theory of consciousness requires the addition of something fundamental to our ontology, as everything in physical theory is compatible with the absence of consciousness. We might add some entirely new nonphysical feature, from which experience can be derived, but it is hard to see what such a feature would be like. More likely, we will take experience itself as a fundamental feature of the world, alongside mass, charge, and space-time. If we take experience as fundamental, then we can go about the business of constructing a theory of experience.
Nonreductive explanation-Facing Up to the Problem of Consciousness

To complicate the matters then is to say that while experience is fundamental, this then refers to some fundamental unit of expression? Experience had to be made up of something much more intricate as to suggest that given the length and determination of that measure which no longer exists, with regard to that length asks that the element still seeks to be expressed as a fact of consciousness?

Tuesday, January 22, 2013


In philosophy, the theory of materialism holds that the only thing that exists is matter or energy; that all things are composed of material and all phenomena (including consciousness) are the result of material interactions. In other words, matter is the only substance, and reality is identical with the actually occurring states of energy and matter.

To many philosophers, 'materialism' is synonymous with 'physicalism'. However, materialists have historically held that everything is made of matter, but physics has shown that gravity, for example, is not made of matter in the traditional sense of "'an inert, senseless substance, in which extension, figure, and motion do actually subsist'… So it is tempting to use 'physicalism' to distance oneself from what seems a historically important but no longer scientifically relevant thesis of materialism, and related to this, to emphasize a connection to physics and the physical sciences."[1] Therefore much of the generally philosophical discussion below on materialism may be relevant to physicalism.

Also related to materialism are the ideas of methodological naturalism (i.e. "let's at least do science as though physicalism is true") and metaphysical naturalism (i.e. "the physical world is all that exists").

Contrasting philosophies include idealism, other forms of monism, dualism, and pluralism.

Defining matter

The nature and definition of matter - like other key concepts in science and philosophy - have occasioned much debate.[12] Is there a single kind of matter (hyle) which everything is made of, or multiple kinds? Is matter a continuous substance capable of expressing multiple forms (hylomorphism),[13] or a number of discrete, unchanging constituents (atomism)?[14] Does it have intrinsic properties (substance theory),[15][16] or is it lacking them (prima materia)?
One challenge to the traditional concept of matter as tangible "stuff" came with the rise of field physics in the 19th century. Relativity shows that matter and energy (including the spatially distributed energy of fields) are interchangeable. This enables the ontological view that energy is prima materia and matter is one of its forms. On the other hand, the Standard Model of Particle physics uses quantum field theory to describe all interactions. On this view it could be said that fields are prima materia and the energy is a property of the field.

See Also:

Sunday, October 21, 2012

Point Being...It's a Material World?

This provides for a beginning point of discussion about the parameters of our thinking in terms of the resolution to our experiences. Do they run further then the constraints we apply to them? In science your boxed in, and you replay all components in the hopes that you can extend or explain the problem and arrive at a conclusion which provides for a stepping off point for furthering the limitations of those constraints.

Intuition and Logic in Mathematics by Henri Poincaré

On the other hand, look at Professor Klein: he is studying one of the most abstract questions of the theory of functions to determine whether on a given Riemann surface there always exists a function admitting of given singularities. What does the celebrated German geometer do? He replaces his Riemann surface by a metallic surface whose electric conductivity varies according to certain laws. He connects two of its points with the two poles of a battery. The current, says he, must pass, and the distribution of this current on the surface will define a function whose singularities will be precisely those called for by the enunciation.

For me the extension here was to see that billiard balls that collide are somehow extended to believe that the greater opportunity here has been to carry the relevance to the sound that is generated at those moments. This carries in a sense as a geometrical expression defined in in Euclidean beginning about a point and then geometrically "all things follow."  This is a schematically drawing if you like about beginnings, yet it is about the dynamical progression of how the non-euclidean moves even more into projective geometries. All of this is a framework for views about the world in which we live and part of the reality. So you apply this to the cosmos.

So given here a parameter with which one wants to talk about and how we can see in the materialist world,  the constraint is found in the expression of correlation and meaning about the geometry we live with. This was defined by the beginning of a Newtonian experience, and in a sense I am showing the diversity of this explanation about reality as Euclid's determination and postulates which were extended.

Gauss and Riemann gave a freedom that a Euclidean could never appreciate,  had not the quest of others helped Riemann to make the leap.

You have define the issue about spirit as related to  "a Heaven,"  yet we are here talking about the mundane? Moving from the issue of the constraints we have applied to our selves in terms of the archaic forms.  We do not want to induce religion as to define our experience but to talk about what science has to say about the entanglement we have with nature? Would you not agree?

While of course the opening is about Heaven is it defined in terms of the experience portrayed.  I am suggesting that there is a contact with nature that is indeed subtle with regard to consciousness defined "as focus."  So in a sense experience suggests a deep impact and meaning to its person that can be correlated with others of similar experiences?

Saturday, February 07, 2009

Fulleranes and Allotropes

"Composition VI", 1913, Wassily Kandinsky

The term "Composition" can imply a metaphor with music. Kandinsky was fascinated by music's emotional power. Because music expresses itself through sound and time, it allows the listener a freedom of imagination, interpretation, and emotional response that is not based on the literal or the descriptive, but rather on the abstract quality that painting, still dependent on representing the visible world, could not provide.On Wassily Kandinsky and Music

How is it one is to picture the emotive content that surrounds us , and in a comparative view assign it to the emotive quality of Earth's Environ. It's storms and raining waters that cleanse, bring tears to the eyes, and in a moments release, all that is pent up rains from the cloud of distress.

So chaotic then one is to perceive the reality they live in. Such uncertainty at levels that create a haze of any time valued determination becomes the clouded colour of reason, that is baseless and motivated by the fires in the heart of anger and revealed in the pain of a lesson.

Held to the Earth's Environ according to our placement of the materials in the expressive nature of some inspirational phase change that holds seeds of the entropic balanced of order.To make Earth more human. It's peaceful places of waterfalls and it's deserts, devoid of the greenery. How dry and taxing this distress hidden in the winds.


Novel Fulleranes

The basic expanded network structure of the icosahedral water cluster is mechanically strong, having close to tetrahedrally-positioned bonds, and could be found in the, as yet undiscovered, alkane C280H120; made up of twenty C14 tetrahedral sub-structures. Using the AMBER force-field, the average C-C and C-H bond lengths and bond angles were 1.533 Å (SD 0.014 Å), 1.091 Å (SD 0.0001 Å) and 109.46° (SD 1.47°) respectively.
See: Water Structure and Science

Icosahedral super cluster

A super cluster of thirteen water icosahedra, showing the tessellation ability. Thirteen complete but overlapping icosahedral clusters form this super-icosahedral structure (an icosahedron of interpenetrating icosahedra; that is, a tricontahedron) containing 1820 water molecules (an outer shell of an additional 360 water molecules is also shown). This structure is for illustrative purposes only of the type of superclustering possible. It is not likely to be a preferred minimum-energy structure due to the increased strain on full tessellation [295]; However the icosahedral structures can form part of fully tessellated clathrate I-type structures.



See Also:
  • Allotropes and the Ray of Creation
  • Mendeleev's Table in a New Light
  • Trademarks of the Geometer II
  • Tuesday, February 12, 2008

    Theoretical Excellence

    Although Aristotle in general had a more empirical and experimental attitude than Plato, modern science did not come into its own until Plato's Pythagorean confidence in the mathematical nature of the world returned with Kepler, Galileo, and Newton. For instance, Aristotle, relying on a theory of opposites that is now only of historical interest, rejected Plato's attempt to match the Platonic Solids with the elements -- while Plato's expectations are realized in mineralogy and crystallography, where the Platonic Solids occur naturally.Plato and Aristotle, Up and Down-Kelley L. Ross, Ph.D.

    This is the first introduction then that is very important to me about what is perceived as a mathematical framework. So it is not such an effort to think about our world and think hmmmm.... a mathematical abstract of our reality is there to be discovered. I first noticed this attribute in Pascal's triangle.

    Nineteenth Century Geometry by Roberto Torretti

    The sudden shrinking of Euclidean geometry to a subspecies of the vast family of mathematical theories of space shattered some illusions and prompted important changes in our the philosophical conception of human knowledge. Thus, for instance, after these nineteenth-century developments, philosophers who dream of a completely certain knowledge of right and wrong secured by logical inference from self-evident principles can no longer propose Euclidean geometry as an instance in which a similar goal has proved attainable. The present article reviews the aspects of nineteenth century geometry that are of major interest for philosophy and hints in passing, at their philosophical significance.

    While I looked further into the world of Pythagorean developments I wondered how such an abstract could have ever lead to the world of non-euclidean geometries. There is this progression of the geometries that needed to be understood. It included so many people that we only now acknowledge the greatest names but it is in the exploration of "theoretical excellence" that we gain access to the spirituality's of the mathematical world.

    "I’m a Platonist — a follower of Plato — who believes that one didn’t invent these sorts of things, that one discovers them. In a sense, all these mathematical facts are right there waiting to be discovered."Donald (H. S. M.) Coxeter

    While some would wonder what value this exploration into such mathematical abstracts, how could we describe for ourselves the ways things would appear at such levels microscopically reduced, has an elemental quality to it? Yes, I have gone to one extreme, and understand, it included so many different mathematics, how could we ever understand this effort and assign it's rightful place in history? Theoretics then, is this effort?

    How Strange the elements of our world?

    The crystalline state is the simplest known example of a quantum , a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. Robert Laughlin

    This illustration depicts eight of the allotropes (different molecular configurations) that pure carbon can take:

    a) Diamond
    b) Graphite
    c) Lonsdaleite
    d) Buckminsterfullerene (C60)
    e) C540
    f) C70
    g) Amorphous carbon
    h) single-walled carbon nanotube

    Review of experiments

    Graphite exhibits elastic behaviour and even improves its mechanical strength up to the temperature of about 2500 K. Measured changes in ultrasonic velocity in graphite after high temperature creep shows marked plasticity at temperatures above 2200 K [16]. From the standpoint of thermodynamics, melting is a phase transition of the first kind, with an abrupt enthalpy change constituting the heat of melting. Therefore, any experimental proof of melting is associated with direct recording of the temperature dependence of enthalpy in the neighbourhood of a melting point. Pulsed heating of carbon materials was studied experimentally by transient electrical resistance and arc discharge techniques, in millisecond and microsecond time regime (see, e.g., [17, 18]), and by pulsed laser heating, in microsecond, nanosecond and picosecond time regime (see, e.g., [11, 19, 20]). Both kind of experiments recorded significant changes in the material properties (density, electrical and thermal conductivity, reflectivity, etc. ) within the range 4000-5000 K, interpreted as a phase change to a liquid state. The results of graphite irradiation by lasers suggest [11] that there is at least a small range of temperatures for which liquid carbon can exist at pressure as low as 0.01 GPa. The phase boundaries between graphite and liquid were investigated experimentally and defined fairly well.

    Friday, March 23, 2007

    Solidification of Geometrical Presence

    While I might infer the "attributes of Coxeter here," it is with the understanding such a dimensional perspective which has it's counterpart in the result of what manifests as matter creations. Yet we have taken our views down to the "powers of ten" to think of what could manifest even before we see the result in nature.

    When you go to the site by PBS of where, Nano: Art Meets Science, make sure you click on the lesson plan to the right.


    Visitors' shadows manipulate and reshape projected images of "Buckyballs." "Buckyball," or a buckminsterfullerene molecule, is a closed cage-structure molecule with a carbon network. "Buckyball" was named for R. Buckminster "Bucky" Fuller (1895-1983), a scientist, philosopher and inventor, best known for creating the geodesic dome.
    Photo Credit: © 2003 Museum Associates/Los Angeles County Museum
    Fundamentally the properties of materials can be changed by nanotechnology. We can arrange molecules in a way that they do not normally occur in nature. The material strength, electronic and optical properties of materials can all be altered using nanotechnology.

    See Related information on bucky balls here in this site. This should give some understanding of how I see the greater depth of what manifest in nature, as solids in our world, has some "other" possibilities in dimensional attribute, while it is given association to the mathematical prowess of E8.

    I do not know of many who will take in all that I have accumulated in regards to how one may look at their planet, can have the depth of perception that is held in to E8.?

    One may say what becomes of the world as it manifest into it's constituent parts, has this energy relation, that it would become all that is in the design of the world around us.

    While some scientists puzzle as to the nature of the process of E8, little did they realize that if you move your perception to the way E8 is mapped to 248 dimensions, the image while indeed quite pleasing, you see as a result.

    It can include so much information, how would you know that this object of mathematics, is a polytrope of a kind that is given to the picture of science in the geometrical structure of the bucky ball or fullerene.


    Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in structure.
    Allotropy (Gr. allos, other, and tropos, manner) is a behaviour exhibited by certain chemical elements: these elements can exist in two or more different forms, known as allotropes of that element. In each different allotrope, the element's atoms are bonded together in a different manner.

    For example, the element carbon has two common allotropes: diamond, where the carbon atoms are bonded together in a tetrahedral lattice arrangement, and graphite, where the carbon atoms are bonded together in sheets of a hexagonal lattice.

    Note that allotropy refers only to different forms of an element within the same phase or state of matter (i.e. different solid, liquid or gas forms) - the changes of state between solid, liquid and gas in themselves are not considered allotropy. For some elements, allotropes can persist in different phases - for example, the two allotropes of oxygen (dioxygen and ozone), can both exist in the solid, liquid and gaseous states. Conversely, some elements do not maintain distinct allotropes in different phases: for example phosphorus has numerous solid allotropes, which all revert to the same P4 form when melted to the liquid state.

    The term "allotrope" was coined by the famous chemist Jöns Jakob Berzelius.

    Saturday, September 23, 2006

    Hydrogen, and the Law of Octaves

    Alex Vilenkin - Many Worlds in One article by Mark of Cosmic Variance drew my interest again after reading with a new perspective gained from understandng some implications about the "anthropic principle."

    Sometimes I even still hold to the idea it is better not to touch this topic because of the greeness with which insight has now taken over. This greeness resides against the reason with which such logic is necessary in regards ot the debate between Susskind and Smolin.

    I do not want to be blinded by the razzle dazzle either of men leading this debate, so as to the layman's pursuite of understanding, I hope to show what I am seeing?

    While I have not read the book either I am still "drawn to the debate" about what the "anthropic reasoning" is talking about at a fundamental level? Scared yes, and on wobbly legs so I continue.

    So as a layman I am curious too ,about views here and what the basis could lead too, in terms of what our universe had become?

    If "carbon" wasn't present at the beginning, then how would you explain our universe?

    Because the triple-alpha process is unlikely, it requires a long period of time to produce carbon. One consequence of this is that no carbon was produced in the Big Bang because within minutes after the Big Bang, the temperature fell below that necessary for nuclear fusion.

    Ordinarily, the probability of the triple alpha process would be extremely small. However, the beryllium-8 ground state has almost exactly the energy of two alpha particles. In the second step, 8Be + 4He has almost exactly the energy of an excited state of 12C. These resonances greatly increase the probability that an incoming alpha particle will combine with beryllium-8 to form carbon. The existence of this resonance was predicted by Fred Hoyle before its actual observation based on its necessity for carbon to be formed.

    I too hate the idea of the "law of crackpostism," yet research back to mendeleev table in regards to Newland, raised interesting ideas about the future of testbility?

    A "harmonical disseration" about the ways we will in the fuure be able to map the elements in "photonic imagery" devised to work within carbon processes?

    What were the ground rules for this universe?

    He is best known for discovering the element plutonium, with Edwin McMillan. He led the team that devised the chemical process for extraction of plutonium.

    Seaborg served as chairman of the Atomic Energy Commission from 1961 until 1971.

    He and McMillan shared the 1951 Nobel Prize in Chemistry for research into transuranic elements.

    Having a framework here in which to establish the elemental nature of our universe, how is it that such principals inherent in "string theory" should not direct our attention to what is a viable indicator of what will fill the spaces between, as Mendeleev was able to do in prediction?

    While one has been introduce to the "allotopes of Coxeter," it is not without some thought that "planck length," along with the understanding of what "geometrical inhernetness?" qunatum geometry, would also spew forth from the very basis of the beginning of that big bang?

    So while I have shown the allotrope here, and dimensional perspective developed, what degrees of freedom say that the space would allow all constants of nature to be described here, and allowed such geometrical principals to form in the bucky ball of carbon, carbon nanotubes?

    It was not wihtout directing our attention to the immediacy of that big bang in the microsecond of "planck time" that we are at a loss then?

    The last major changes to the periodic table was done in the middle of the 20th Century. Glenn Seaborg is given the credit for it. Starting with his discovery of plutonium in 1940, he discovered all the transuranic elements from 94 to 102. He reconfigured the periodic table by placing the actinide series below the lanthanide series. In 1951, Seaborg was awarded the Noble prize in chemistry for his work. Element 106 has been named seaborgium (Sg) in his honor.


  • CNO and the Law of Octaves

  • Allotropes and the Ray of Creation