Friday, January 23, 2015

After Relativism

Watch more videos on


 "...underwriting the form languages of ever more domains of mathematics is a set of deep patterns which not only offer access to a kind of ideality that Plato claimed to see the universe as created with in the Timaeus; more than this, the realm of Platonic forms is itself subsumed in this new set of design elements-- and their most general instances are not the regular solids, but crystallographic reflection groups. You know, those things the non-professionals call . . . kaleidoscopes! * (In the next exciting episode, we'll see how Derrida claims mathematics is the key to freeing us from 'logocentrism'-- then ask him why, then, he jettisoned the deepest structures of mathematical patterning just to make his name...)

* H. S. M. Coxeter, Regular Polytopes (New York: Dover, 1973) is the great classic text by a great creative force in this beautiful area of geometry (A polytope is an n-dimensional analog of a polygon or polyhedron. Chapter V of this book is entitled 'The Kaleidoscope'....)"

See Also:

Thursday, January 22, 2015

Quantum Chromodynamics

Source -

Nobel Prize laureate David Gross on Rutherford experiments, asymptotic freedom, and the origin of the particle masses

Wednesday, January 21, 2015

The Dark Matter Hunt

Dark matter, the substance making up 85 percent of all the mass in the universe, is invisible. The goal of ADMX is to detect it by turning it into photons, particles of light. Dark matter was forged in the early universe, under conditions of extreme heat. ADMX, on the other hand, operates in extreme cold. Dark matter comprises most of the mass of a galaxy. To find it, ADMX will use sophisticated devices microscopic in size. 
Scientists on ADMX—short for the Axion Dark Matter eXperiment—are searching for hypothetical particles called axions. The axion is a dark matter candidate that is also a bit of a dark horse, even as this esoteric branch of physics goes. See:  Dark horse of the dark matter hunt

Monday, January 12, 2015

Rationalism vs Empiricism

The dispute between rationalism and empiricism concerns the extent to which we are dependent upon sense experience in our effort to gain knowledge. Rationalists claim that there are significant ways in which our concepts and knowledge are gained independently of sense experience. Empiricists claim that sense experience is the ultimate source of all our concepts and knowledge.

Rationalists generally develop their view in two ways. First, they argue that there are cases where the content of our concepts or knowledge outstrips the information that sense experience can provide. Second, they construct accounts of how reason in some form or other provides that additional information about the world. Empiricists present complementary lines of thought. First, they develop accounts of how experience provides the information that rationalists cite, insofar as we have it in the first place. (Empiricists will at times opt for skepticism as an alternative to rationalism: if experience cannot provide the concepts or knowledge the rationalists cite, then we don't have them.) Second, empiricists attack the rationalists' accounts of how reason is a source of concepts or knowledge. SEE: Markie, Peter, "Rationalism vs. Empiricism", The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta (ed.),

 Long before I had come to understand this nature of rationalism there were already signs that such a journey was already being awakened. This was an understanding for me as to the nature of what could be gained from the ability to visualize beyond empirical nature of our journey into the sensible realm.

I guess in a such an awakening,  as to what we know,  there is the realization that what comes after helps to make that sense. So in a way one might like to see how rationalism together with Empiricism actually works. It is not in the sense that I might define one group of historical thinkers to contrast each other to say that one should excel over another, but to define how such a rationally sound person moves toward empiricism to understand the reality we created by experimentation and repeatability that empiricism enshrouds.

So this awakening while slow to materialize, comes from understanding something about the logic of the world and the definitions and architecture of that logical approach. To me in this day and age it has lead to some theory about which computational view could hold the idea about how we might see this reality. I am reticence to view this  as a form of that reality. It is for what holds me back is a self evident moment using deducted features of our reasoning,  which could move us to that moment of clarity.

 The Empiricism Thesis: We have no source of knowledge in S or for the concepts we use in S other than sense experience Empircism -

 Empirical fact would not be the basis of reality for Nick Bostrum's simulation argument for instance. I hope to explain why.

 The basis of this association(Rationalist, or, a Empiricist) is whether one gains by a deductive method, or, an inductive method. A sense experience tells us, science as we know it, is inductive. We must garner repeatable experiments to verify reality, a rationalist, by logic and reason of theory alone. Verification, comes afterward. This for a rationalist is a deductive something which can be true, can be "innate" before we accept the inductive method means,  that is it can be rationally ascertained. It is only after ward that such a process could be said to be true or false.

If the late character of our sources may incite us to doubt the authenticity of this tradition, there remains that, in its spirit, it is in no way out of character, as can be seen by reading or rereading what Plato says about the sciences fit for the formation of philosophers in book VII of the Republic, and especially about geometry at Republic, VII, 526c8-527c11. We should only keep in mind that, for Plato, geometry, as well as all other mathematical sciences, is not an end in itself, but only a prerequisite meant to test and develop the power of abstraction in the student, that is, his ability to go beyond the level of sensible experience which keeps us within the "visible" realm, that of the material world, all the way to the pure intelligible. And geometry, as can be seen through the experiment with the slave boy in the Meno (Meno, 80d1-86d2), can also make us discover the existence of truths (that of a theorem of geometry such as, in the case of the Meno, the one about doubling a square) that may be said to be "transcendant" in that they don't depend upon what we may think about them, but have to be accepted by any reasonable being, which should lead us into wondering whether such transcendant truths might not exist as well in other areas, such as ethics and matters relating to men's ultimate happiness, whether we may be able to "demonstrate" them or not.See: Frequently Asked Questions about Plato by Bernard SUZANNE
When you examine deeply the very nature of your journey, then, you come to realize what is hidden underneath "experience." So while being an empiricist, it is necessary to know that such a joining with the rationalist correlates with the reasoned only after the mentioned experience. These are "corollary experiences," which serve to identify that which had been identified long before the sensible world had been made known.

Paradoxically, it was Einstein who reluctantly introduced the notion of spontaneous events, which might after all be the root of Bellʼs theorem. The lesson for the future could, however, be that we should build the notion of locality on the operationally clear 'no-signalling' condition—the impossibility of transferring information faster than light. After all, this is all that theory of relativity requires.

The moral of the story is that Bellʼs theorem, in all its forms, tells us not what quantum mechanics is, but what quantum mechanics is not.
Quantum non-locality—it ainʼt necessarily so... -

Empiricism then is to validate as a corollary that which had been cognate(maybe poor choice of word here but instead should use cognition). This does not mean you stop the process, but to extend the visionary possibility of that which can be cognitive....peering into the very nature of reality. Becomes the " we should build the notion of locality on the operationally clear 'no-signalling' condition."

Here the question of entanglement raises it's head to ask what is really being trasmitted as the corrallary of information,  as a direct physical connection in a computational system. In a quantum gravity scheme what is exchanged as a spin 2 graviton we might examine in the corollary of this no signalling condition but as a direct understanding of gravitational signalling.?

Such an examination reveals the Innate process with which we may already know "some thing,"  is awakened by moving into the world of science. While we consider such computational reality in context of a ontological question,  then,  such a journey may be represented as the geometry of the being which reveals a deeper question about the make-up of that reality.

Affective Field Theory of Emotion regarding sensory development may aid in the journey for understanding the place with which "the idea/form in expression arises," and that which is reasoned, beyond the related abstractions of "such a beginning," by becoming the ideal, in the empiricist world.