Saturday, June 07, 2014

Lifi and 5g: Optical Communications


Visible light is only a small portion of the electromagnetic spectrum.

I have been away a while getting caught up on some work and enjoying some vacation time. I am always exciting about where we are going next in terms of communication development. Some of these previews  have been show here in various blog posts, that you can preview with label access.

The United States 700 MHz FCC wireless spectrum auction was started by the FCC on January 24, 2008 for the rights to operate the 700 MHz frequency band in the United States. The details of process were the subject of debate between several telecommunications companies, including Verizon Wireless, AT&T, and startup Frontline Wireless, as well as the Internet company Google. Much of the debate swirled around the "open access" requirements set down by the Second Report and Order released by the FCC determining the process and rules for the auction. All bidding must be commenced by January 28 by law. The auction was named Auction 73.[1]


The interesting thing here in terms of development is that the industry is still in a sort of infancy where those who are quite brave in terms of their science and knowledge back ground can contribute and create a different type of communication base that is current residing outside of government regulations right now. The spectrum allocation is currently not licensed and using that platform if you can develop it create the possibility of networks that do not currently reside in spectrum allocation that are being sold.?


Li-Fi, or "light fidelity", is a technology, that can be a complement of RF communication (Wi-Fi or Cellular network), or a replacement in contexts of data broadcasting. Li-Fi, like Wi-Fi, is the high speed, bidirectional and fully networked subset of visible light communications (VLC). It is wireless and uses visible light communication (instead of radio frequency waves), which carries much more information, and has been proposed as a solution to the RF-bandwidth limitations.[1]

 While we know the ground rules of communication are limited in terms of wifi, the future is quite as to how information can be disseminated and how much of it can be accessed through new technology that will reside outside of the devices that currently are being adapted too, to use that type of communication. So I encourage new development here if you have the brains and brawn in order to tackle that new fledgling business of the future.

 It is a 5G[2] visible light communication system that uses light from light-emitting diodes (LEDs) as a medium to deliver networked, mobile, high-speed communication in a similar manner as Wi-Fi.[3] Li-Fi could lead to the Internet of Things, which is everything electronic being connected to the internet, with the LED lights on the electronics being used as Li-Fi internet access points.[4] The Li-Fi market is projected to have a compound annual growth rate of 82% from 2013 to 2018 and to be worth over $6 billion per year by 2018.[5]

It is a sobering thought to thing of the optical side of things of having such a wide market growth, with the potential of money development, but at the same time brings to light the development that is currently and has yet to become marketable through innovation and technological design. So I encourage the young folk coming out of universities to explore at least from their educative perspective and expertise this area of communication and technological design..



pureLiFi is at the forefront of research and commercialisation into Li-Fi, an industry expected to grow from $100 million to $6 billion by 2018. Visible Light Communication (VLC) is the use of light to transmit data wirelessly. Li-Fi - a term coined by pureLiFi’s Chief Science Officer and co-founder, Professor Haas – is a technology based on VLC that provides full networking capabilities similar to Wi-Fi, but with significantly greater spatial reuse of bandwidth. See: pureLiFi to demonstrate first ever Li-Fi system at Mobile World Congress

***

See Also: