Thursday, March 15, 2012

Message Sent Through Rock Via Neutrino Beam

See:Cern Courier:The right spin for a neutrino superfluid

If like myself you are watching the history of communication,  it becomes important to understand the advances we have on the horizon for when we are looking across the expanse of space for consideration of that information transference.

MINERvA: Bringing Neutrinos into Sharp Focus

Like radio waves, neutrino beams spread out. Moving farther away from the neutrino source is somewhat like driving away from a radio tower: Eventually you lose the signal. Until physicists create more intense beams of neutrinos or build more powerful detectors, the goal of using neutrinos to communicate with people under the sea or outside Earth’s orbit will remain out of reach.See:Scientists send encoded message through rock via neutrino beam
  While relativistic interpretations are understood with Muon detection scenarios we are able to understand some things about the earth that we had not known before. So in this case we see where such communications are already defining for us some information about the world we live in.



 Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0.1 bits/sec with a bit error rate of 1% over a distance of 1.035 km, including 240 m of earth.

ICARUS: the neutrino speed discrepancy is 0, not 60 ns

 We examine the possibility to employ neutrinos to communicate within the galaxy. We discuss various issues associated with transmission and reception, and suggest that the resonant neutrino energy near 6.3 PeV may be most appropriate. In one scheme we propose to make Z^o particles in an overtaking e^+ - e^- collider such that the resulting decay neutrinos are near the W^- resonance on electrons in the laboratory. Information is encoded via time structure of the beam. In another scheme we propose to use a 30 PeV pion accelerator to create neutrino or anti-neutrino beams. The latter encodes information via the particle/anti-particle content of the beam, as well as timing. Moreover, the latter beam requires far less power, and can be accomplished with presently foreseeable technology. Such signals from an advanced civilization, should they exist, will be eminently detectable in neutrino detectors now under construction. See:Galactic Neutrino Communication by John G. Learned, Sandip Pakvasa, A. Zee

See Also: