Wednesday, October 05, 2011

Proton Collision ->Decay to Muons and Muon Neutrinos ->Tau Neutrino ->

.....tau lepton may travel some tens of microns before decaying back into neutrino and charged tracks

 Before I comment on the result, let me give you a little background on the whole thing. Opera is a very innovative concept in neutrino detection. Its aim is to detect tau neutrino appearance in a beam of muon neutrinos. A Six-Sigma Signal Of Superluminal Neutrinos From Opera!

The OPERA result is based on the observation of over 15000 neutrino events measured at Gran Sasso, and appears to indicate that the neutrinos travel at a velocity 20 parts per million above the speed of light, nature’s cosmic speed limit. Given the potential far-reaching consequences of such a result, independent measurements are needed before the effect can either be refuted or firmly established. This is why the OPERA collaboration has decided to open the result to broader scrutiny. The collaboration’s result is available on the preprint server arxiv.org

In order to perform this study, the OPERA Collaboration teamed up with experts in metrology from CERN and other institutions to perform a series of high precision measurements of the distance between the source and the detector, and of the neutrinos’ time of flight. The distance between the origin of the neutrino beam and OPERA was measured with an uncertainty of 20 cm over the 730 km travel path. The neutrinos’ time of flight was determined with an accuracy of less than 10 nanoseconds by using sophisticated instruments including advanced GPS systems and atomic clocks. The time response of all elements of the CNGS beam line and of the OPERA detector has also been measured with great precision.


By classifying the neutrino interactions according to the type of neutrino involved (electron-neutrino or muon-neutrino) and counting their relative numbers as a function of the distance from their creation point, we conclude that the muon-neutrinos are "oscillating." See: STATEMENT: EVIDENCE FOR MASSIVE NEUTRINOS FOUND by Dave Casper

We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year (535-day)exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent de ficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. . Evidence for oscillation of atmospheric neutrinos