Pages

Thursday, August 26, 2010

The Universe Time Travel

The mystery of time travel is explored as we embark on an adventure to reveal if traveling into the future will one day be a reality. Next we examine if traveling into the past will have bizarre consequences. Finally, are scientists on the verge of discovering an Earth-like planet within the next few years?


The Universe: Time Travel

Clifford gives a heads up, as well some appearances in the production of.

I have always been fascinated by the Time travel scenarios as they have been presented in story form. I do appreciate the subtleties of the proper interpretations as sciences knows it in context of it's proper form.

I just noticed that last week’s episode of The Universe on Time Travel, which I told you about here and here, is available online on their website. Click here to learn more about the ins and outs of it, and I show you how to make one too! Kind of.Clifford of Asymptotia
***
See Also

Gott Time?

TimeSpeak

Time is Like a River

Monday, August 23, 2010

Quantum Computing

Towards quantum chemistry on a quantum computer

B. P. Lanyon1,2, J. D. Whitfield4, G. G. Gillett1,2, M. E. Goggin1,5, M. P. Almeida1,2, I. Kassal4, J. D. Biamonte4,6, M. Mohseni4,6, B. J. Powell1,3, M. Barbieri1,2,6, A. Aspuru-Guzik4 & A. G. White1,2

Abstract

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

Sunday, August 15, 2010

Cymatics and the Heart Song

I think one has to wonder with such diversities of souls who have entered this world, such distinctions of being identified as a "emergent product of all souls" might have a distinctive element with which lives could have been choreographed. Each soul, manifests according to their Heart Song? :)Each Heart Song is carried through a series of many lives? Each Heart Song,manifests according the conceptual acceptances and digestibility of our grokking, according to each circumstance that surrounds that life?



I just finish spending the last 8 days with two of my seven grandchildren. One had passed just a couple of days after being born.

Yes "Happy feet" has become a intricate part of my days visiting as these children are mesmerized by the hearts songs and uniqueness of being borne learning to tap instead of singing. It's trials and tribulations of being different.
See:It's a Penquin?
Biology sees no possible reduction to the physics of thinking,  that I have to wonder if they might of thought of the correlation here, as distinctive elements have distinctive sounds?

It's an anologistical way of looking at the space of thinking(mind /body) to have it coincide with somethng inherent in our make up.  Some thing that is correlative to what strides the thinking mind makes and what resonances in the world are set up for each soul distinctive?  Each soul's cause and effect,  bringing home to roost the conceptually formed resonances that have been formed " by grokking and digestibility.

For example, in 1704 Sir Isaac Newton struggled to devise mathematical formulas to equate the vibrational frequency of sound waves with a corresponding wavelength of light. He failed to find his hoped-for translation algorithm, but the idea of correspondence took root, and the first practical application of it appears to be the clavecin oculaire, an instrument that played sound and light simultaneously. It was invented in 1725. Charles Darwin’s grandfather, Erasmus, achieved the same effect with a harpsichord and lanterns in 1790, although many others were built in the intervening years, on the same principle, where by a keyboard controlled mechanical shutters from behind which colored lights shne. By 1810 even Goethe was expounding correspondences between color and other senses in his book, Theory of Color. Pg 53, The Man Who Tasted Shapes, by Richard E. Cytowic, M.D.

So to then in my thinking that before each soul crystallizes it's hold on the reality of being in this world,  that each soul was in a much different state. A state that the senses held no distinctions other then too, sense "all things" as connected to each other.  The differentiations were our attempts to acceptance of living within this world that it should have it;s compartments for sensory outputs distinctive themselves. See:Soul Food

***



 ***

Cymatics

From Wikipedia, the free encyclopedia


Resonance made visible with black seeds on a harpsichord sounboard
Cornstarch and water solution under the influence of sine wave vibration
Amplified sine wave's effects on cornstarch & water solution
Cymatics (from Greek: κῦμα "wave") is the study of visible sound and vibration, a subset of modal phenomena. Typically the surface of a plate, diaphragm, or membrane is vibrated, and regions of maximum and minimum displacement are made visible in a thin coating of particles, paste, or liquid.[1] Different patterns emerge in the exitatory medium depending on the geometry of the plate and the driving frequency.
The apparatus employed can be simple, such as a Chladni Plate[2] or advanced such as the CymaScope, a laboratory instrument that makes visible the inherent geometries within sound and music.[clarification needed]

Contents


Etymology

The generic term for this field of science is the study of modal phenomena, retitled Cymatics by Hans Jenny, a Swiss medical doctor and a pioneer in this field. The word Cymatics derives from the Greek 'kuma' meaning 'billow' or 'wave,' to describe the periodic effects that sound and vibration has on matter.

History

The study of the patterns produced by vibrating bodies has a venerable history. One of the earliest to notice that an oscillating body displayed regular patterns was Galileo Galilei. In Dialogue Concerning the Two Chief World Systems (1632), he wrote:
As I was scraping a brass plate with a sharp iron chisel in order to remove some spots from it and was running the chisel rather rapidly over it, I once or twice, during many strokes, heard the plate emit a rather strong and clear whistling sound: on looking at the plate more carefully, I noticed a long row of fine streaks parallel and equidistant from one another. Scraping with the chisel over and over again, I noticed that it was only when the plate emitted this hissing noise that any marks were left upon it; when the scraping was not accompanied by this sibilant note there was not the least trace of such marks.[3]
On July 8, 1680, Robert Hooke was able to see the nodal patterns associated with the modes of vibration of glass plates. Hooke ran a bow along the edge of a glass plate covered with flour, and saw the nodal patterns emerge.[4][5]

In 1787, Ernst Chladni repeated the work of Robert Hooke and published "Entdeckungen über die Theorie des Klanges" ("Discoveries in the Theory of Sound"). In this book, Chladni describes the patterns seen by placing sand on metal plates which are made to vibrate by stroking the edge of the plate with a bow.
Cymatics was explored by Hans Jenny in his 1967 book, Kymatik (translated Cymatics).[6] Inspired by systems theory and the work of Ernst Chladni, Jenny began an investigation of periodic phenomena but especially the visual display of sound. He used standing waves, piezoelectric amplifiers, and other methods and materials.

Influences in art

Hans Jenny's book influenced Alvin Lucier and, along with Chladni, helped lead to Lucier's composition Queen of the South. Jenny's work was also followed up by Center for Advanced Visual Studies (CAVS) founder Gyorgy Kepes at MIT. [7] His work in this area included an acoustically vibrated piece of sheet metal in which small holes had been drilled in a grid. Small flames of gas burned through these holes and thermodynamic patterns were made visible by this setup.

Based on work done in this field, photographer Alexander Lauterwasser captures imagery of water surfaces set into motion by sound sources ranging from pure sine waves, to music by Ludwig van Beethoven, Karlheinz Stockhausen, electroacoustic group Kymatik(who often record in surround sound ambisonics), and overtone singing.



Rosslyn Chapel's carvings are thought to contain references to Cymatics patterns and in 2005 composer Stuart Mitchell and his father T.J.Mitchell created a work realised by the use of matching Cymatics/Chladni patterns to the 13 geometric symbols carved onto the faces of 213 cubes emanating from 14 arches. They have named the completed work The Rosslyn Motet and has received a great deal of media publicity and acclaim from scientific and musicological sources.

See also

References

  1. ^ Jenny, Hans (July 2001). Cymatics: A Study of Wave Phenomena & Vibration (3rd ed.). Macromedia Press. ISBN 1-8881-3807-6. 
  2. ^ "Instructional Research Lab: Chladni Plate". University of California, Los Angeles. http://www.physics.ucla.edu/demoweb/demomanual/acoustics/effects_of_sound/chladni_plate.html. Retrieved 3 September 2009. 
  3. ^ Good Vibrations, Joyce McLaughlin, American Scientist, July-August 1998, Volume: 86 Number: 4 Page: 342, DOI: 10.1511/1998.4.342
  4. ^ Ernst Florens Friedrich Chladni, Institute for Learning Technologies, Columbia University
  5. ^ Pg 101 Oxford Dictionary of Scientists- Oxford University Press- 1999
  6. ^ Jenny, Hans (1967). Kymatik. ISBN 1-888138-07-6
  7. ^ Gyorgy Kepes profile at MIT

 External links


Thursday, August 12, 2010

Dark Matter

(Click on Image)


Friedman Equation What is pdensity.

What are the three models of geometry? k=-1, K=0, k+1

Negative curvature

Omega=the actual density to the critical density
If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?  

See Also:
***


I am not sure if it is proper to take such expressions of dark energy and dark matter as they are perceived in the universe and apply them to a "dynamical movement of a kind,"  as an expression of that Universe?

Part of that "Toposense" you might say?




***
IN their figure 2. Hyperbolic space, and their comparative relation to the M.C.Escher's Circle Limit woodcut, Klebanov and Maldacena write, " but we have replaced Escher's interlocking fish with cows to remind readers of the physics joke about the spherical cow as an idealization of a real one. In anti-de Sitter/conformal theory correspondence, theorists have really found a hyperbolic cow."

Click on image for larger version. See:Solving quantum field theories via curved spacetimes by Igor R. Klebanov and Juan M. Maldacena

See:

Sunday, August 08, 2010

She Returns


Most readers of this blog who have been around for sometime will recognize some of the pictures of Wildlife that have appeared around our property over the last couple of years.



Well the lady is back again this year, and what makes this little lady's visit a little extraordinary is that we had constructed a fence around our two acres, to stop the bears from coming in while we were outside, unaware.

If you count careful you will see three little ones


What also makes this unusual is two things. One, that the Mrs had left the front gate open for a satellite repair guy to help realign the dish to the proper coordinates, and that sometime during this,  momma and three of her cubs came to enter the area.



As our dog started to bark, and after the Mrs. had closed the front gate did she soon realize that the ruckus in the back was the mother bear and her three cubs. So while she had been outside, and while the satellite guy was working,  the trio and momma were in the vicinity without being noticed.








 I think two of the little ones take after Dad


See:

Saturday, August 07, 2010

Space Weather

3-day Solar-Geophysical Forecast issued Aug 07 22:00 UTC

Solar Activity Forecast: Solar activity is expected to be very low to low with C-class flares likely from Region 1093 and 1095 (S18E19). A chance of M-class activity is possible from Region 1093.
Geophysical Activity Forecast: Geomagnetic field activity is expected to be mostly quiet with an isolated chance of unsettled levels during the next three days (08 - 10 August). See: Today's Space Weather
 ***

Solar flares are classified as A, B, C, M or X according to the peak flux (in watts per square meter, W/m2) of 100 to 800 picometer X-rays near Earth, as measured on the GOES−4 W/m2. Within a class there is a linear scale from 1 to 9, so an X2 flare is twice as powerful as an X1 flare, and is four times more powerful than an M5 flare. The more powerful M and X class flares are often associated with a variety of effects on the near-Earth space environment. Although the GOES classification is commonly used to indicate the size of a flare, it is only one measure. This extended logarithmic earthquakes show similar power-law[3]
 ***


Michel Tournay,
Chisasibi, Quebec, Canada
Aug. 4, 2010
 
The whole sky was green, purple, I had a hard time deciding where to aim my cameras! Here are 3 pictures taken from a long series to make an animation of the movement. Nikon D3s , 10 000 ASA, 10.5 mm f2.8 set at full frame to get wider than the Dx format ! the last one was taken with a Nikon D3 with a 28mm f1.4 at 3200 ASA See: Aurora Photo Gallery 2010