Wednesday, November 22, 2006

Tunnelling in Faster then Light

Underneath this speculation of mine is the geometrical inclination of the universe in expression. If it's "dynamical nature is revealed" what allows us to think of why this universe at this time and junction, should be flat(?) according to the time of this universe in expression?

Omega=the actual density to the critical density

If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?


Positive energy density gives spacetime of the universe a positive curvature. A sphere? Negative curvature a region of spacetime that is negative and curved like a saddle? For time travel, and travel into the past, you need a universe that has a negative energy density.

Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?



A anti-particle can be considered as a particle moving back in time? Only massless particle can travel faster then light. Only faster then light massless particles can travel back in time? So of course, I am again thinking of the elephant process of Susskind and the closed loop process of the virtual particle/anti-particle. What comes out of it?

That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.


So the anti-particle falls into the blackhole? How is it that I resolve this?? You can consider the anti-particle as traveling back in time. The micro perspective of the blackhole allows time travel backwards.


Getty Images
Although a 1916 paper by Ludwig Flamm from the University of Vienna [4] is sometimes cited as giving the first hint of a wormhole, "you definitely need hindsight to detect it," says Matt Visser of Victoria University in Wellington, New Zealand. Einstein and Rosen were the first to take the idea seriously and to try to accomplish some physics with it, he adds. The original goal may have faded, but the Einstein-Rosen bridge still pops up occasionally as a handy solution to the pesky problem of intergalactic travel.


There are two cases in which the thoughts about faster then light particles are created and this is the part where one tries to get it right so as not to confuse themselves and others.

Wormholes?

Plato:
So "open doorways" and ideas of "tunneling" are always interesting in terms of how we might look at an area like GR in cosmology? Look for way in which such instances make them self known.

Are they applicable to the very nature of quantum perceptions that such probabilities could have emerged through them? Held to "time travel scenarios" and grabbed the history of what had already preceded us in past tense, could have been brought again forward for inspection?


Sure I am quoting myself here, just to show one of the options I am showing by example. The second of course is where I was leading too in previous posts.

So I was thinking here in context of one example in terms of the containment of the "graviton in a can" is really letting loose of the information in the collision process, as much as we like this "boundary condition" it really is not so.

Another deep quantum mystery for which physicists have no answer has to do with "tunneling" -- the bizarre ability of particles to sometimes penetrate impenetrable barriers. This effect is not only well demonstrated; it is the basis of tunnel diodes and similar devices vital to modern electronic systems.

Tunneling is based on the fact that quantum theory is statistical in nature and deals with probabilities rather than specific predictions; there is no way to know in advance when a single radioactive atom will decay, for example.

The probabilistic nature of quantum events means that if a stream of particles encounters an obstacle, most of the particles will be stopped in their tracks but a few, conveyed by probability alone, will magically appear on the other side of the barrier. The process is called "tunneling," although the word in itself explains nothing.

Chiao's group at Berkeley, Dr. Aephraim M. Steinberg at the University of Toronto and others are investigating the strange properties of tunneling, which was one of the subjects explored last month by scientists attending the Nobel Symposium on quantum physics in Sweden.

"We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunneling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

"This is another great mystery of quantum mechanics."


Of course I am looking for processes in physics that would actually demonstrate this principal of energy calculated at the very beginning of the collision process, now explained in the detector, minus the extra energy that had gone where?



This is the basis for the "Graviton in a can" example of what happens in the one scenario.

Plato:
A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature


Plasmas and Bose condensates

So in essence the physics process that I am identifying is shown by understanding that the "graviton production" allows that energy to be transmitted outside the process of the LHC?

This is the energy that can be calculated and left over from all the energy assumed in the very beginning of this collision process. Secondly, all energy used in this process would be in association with bulk perspective.

This now takes me to the second process of "time travel" in the LHC process. The more I tried to figure this out the basis of thought here is that Cerenkov radiation in a vacuum still is slower then speed of light, yet within the medium of ice, this is a different story. So yes there are many corrections and insight here to consider again.

The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


So while sleeping last night the question arose in my mind as to the location of where the "higgs field" will be produced in the LHC experiment? Here also the the thoughts about the "cross over point" that would speak to the idea here of what reveals faster then light capabilities arising from the collision process?

What are the main goals of the LHC?-
The LHC will also help us to solve the mystery of antimatter. Matter and antimatter must have been produced in the same amounts at the time of the Big Bang. From what we have observed so far, our Universe is made of only matter. Why? The LHC could provide an answer.

It was once thought that antimatter was a perfect 'reflection' of matter - that if you replaced matter with antimatter and looked at the result in a mirror, you would not be able to tell the difference. We now know that the reflection is imperfect, and this could have led to the matter-antimatter imbalance in our Universe.

The strongest limits on the amount of antimatter in our Universe come from the analysis of the diffuse cosmic gamma-rays arriving on Earth and the density fluctuations of the cosmic background radiation. If one asumes that after the Big Bang, the Universe separated somehow into different domains where either matter or antimatter was dominant, then at the boundaries there should be annihilations, producing cosmic gamma rays. In both cases the limit proposed by current theories is practically equivalent to saying that there is no antimatter in our Universe.


So we get the idea here in the collision process and from it the crossover point leaves a energy dissertation on what transpired from this condition and left the idea in my mind about the circumstances of what may have changed the the speed of the cosmos at varying times in the expansion process within our universe. So, this is where I was headed as I laid out the statement below.

Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."


So what is the jest of my thought here that I would go to great lengths here to speak about the ideas of what happens within the cosmos to change those varying times of expansion? It has to do with the Suns and the process within those suns that give the dark energy some value, in it's anti- gravity nature to align our selves and our thinking to the cosmological constant of Einstein. If we juggle the three ring circus we find that the curvature parameters can and do hold thoughts govern by the cosmological constant?

It is thus equally important to identify this "physics process" that would allow such changes in the cosmos. So that we can understand the dynamical nature that the cosmos reveals to us can and does allow aspect of its galaxies within context of the universe to increase this expansive process while we question what drives such conditions.