Friday, October 27, 2006

Probing the Perfect Liquid

If you learn to understand the relationship between QGP and the physics underlying hydrodynamic flows then what leads one to believe that the blackholes cannot also create the circumstances, for the process you may observe in the cosmos, "is" directly related to the effects of the "relativistic nature" of flows?

There is no further need from this point to refer to the big bang as a collision process. Focus on the energy and how cosmologically the QGP was gotten too, in a cosmological sense.

And that out of such issuances, "new particle creations" are ignited in possible new universes/physics?

While some like chocolate bars and the bubble nature of candy, some also like the molasses and ice cream? :)

Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

Proving that under certain conditions the quark-gluon plasma behaves according to such calculations is an exciting discovery for physicists, as it brings them a little closer to understanding how matter behaves at very small scales. But the challenge remains to determine the properties of the plasma under other conditions.

"We want to measure when the quark-gluon plasma behaves like a perfect fluid with zero viscosity, and when it doesn't," says Lauret. "When it doesn't match our calculations, what parameters do we have to change? If we can put everything together, we might have a model that reproduces everything we see in our detector."