Sunday, February 12, 2006

Cosmic Variance's Very Own: Strangelets in 10 or 11

Cosmic Variance's very own.

Hewett, Lillie and Rizzo found that if so called micro-black holes, which are smaller than the nucleus of an atom, exist, they can be used to determine the number of extra dimensions. If scientists were to smash two high energy protons together they could theoretically make such a micro-black hole. Such a collision could happen at CERN’s Large Hadron Collider (LHC), which will become operational next year. Once created, the micro-black hole decays quickly and emits over a dozen different kinds of particles such as electrons, neutrinos and photons, which are easy to detect. Using the predicted decay properties of the black hole into neutrinos, Hewett, Lillie and Rizzo solved complex equations to determine if our universe has 10, 11, or more dimensions — perhaps too many dimensions to be explained by critical string theory.


So what is the experiment that is being produced?

Using the predicted decay properties of the black hole into neutrinos,

While I consider the state itself, the thoughts of ICECUBE come to mind. This previous ICECUBE post on this is extremely helpful.

What is also helpful is to remember what the collision process produces and how we can see this process in relation to cosmic collisions. Not just in the colliders themself. While we might of debated the strange matter below, I enlist the idea of the gravitonc considerations and maybe it is not altogether clear, it is with some satisfaction that such thinking of dimensional attributes are actually given parameters with which to work?

Strange Matter (12 Feb 2006)

Some theories suggest that strange matter, unlike neutronium, may be stable outside of the intense pressure that produced it; if this is so, then small substellar pieces of strange stars (sometimes called strangelets) may exist in space in a wide range of sizes all the way down to atomic scales. There is some concern that ordinary matter, upon contacting a strangelet, would be compressed into additional strange matter by its gravity; strangelets would therefore be able to "eat" any ordinary matter they came into contact with, such as planets or stars. This possibility is not considered likely, however.

Strangelets are thought to have a net positive charge, which is neutralized by the presence of degenerate electrons extending slightly beyond the edge of the strangelet, a kind of electron "atmosphere." If a normal matter atomic nucleus encounters a strangelet, it will approach until it begins penetrating this negatively charged atmosphere. At that point it will start to see the positive electrical potential and be repelled from the strangelet. Sufficiently energetic nuclei, or neutrons (which are unaffected by electrical charges), can reach the strangelet and be absorbed; the up/down/strange quark ratio would then readjust by beta decay.


See:
Phases of Matter for Reference

Exotic physics finds black holes could be most 'perfect,' low-viscosity fluid

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions -- or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions -- behaves as if it has a viscosity near zero, the lowest yet measured.

It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.


See:

  • Blackhole Creations

  • Strangelets in Cosmic Considerations

  • Cosmic Ray Collisions and Strangelets Produced

  • Microstate Blackhole Production

  • Quark Gluon PLasma II: Strangelets Produced

  • Accretion Disks

  • Strangelets Form Gravitonic Concentrations

  • IN a Viscosity State Production is ?

  • What Are those Quantum Microstates
  • Post a Comment