Pages

Friday, October 14, 2005

Art and Science

This is going to be quite the blog entry because as little a response might have been from Clifford's links to artistic imagery and it's relation to science. I definitely have more to say.

So being short of time, the entries within this blog posting will seem disjointed, but believe me it will show a historical significance that one would not have considered had one not seen the relevance of art and it's implications along side of science.

Did Picasso Know About Einstein

Arthur Miller
Miller has since moved away from conventional history of science, having become interested in visual imagery through reading the German-language papers of Einstein, Heisenberg and Schrödinger - "people who were concerned with visualization and visualizability". Philosophy was an integral part of the German school system in the early 1900s, Miller explains, and German school pupils were thoroughly trained in the philosophy of Immanuel Kant.


Piece Depicts the Cycle of Birth, Life, and Death-Origin, Identity, and Destiny by Gabriele Veneziano
The Myth of the Beginning of Time

The new willingness to consider what might have happened before the big bang is the latest swing of an intellectual pendulum that has rocked back and forth for millenia. In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined witha grand set of concerns, one famosly encapsulated in a 1897 painting by Paul Gauguin: D'ou venons? Que sommes-nous? Ou allons-nous?
Scientific America, The Time before Time, May 2004.



Sister Wendy's American Masterpieces":

"This is Gauguin's ultimate masterpiece - if all the Gauguins in the world, except one, were to be evaporated (perish the thought!), this would be the one to preserve. He claimed that he did not think of the long title until the work was finished, but he is known to have been creative with the truth. The picture is so superbly organized into three "scoops" - a circle to right and to left, and a great oval in the center - that I cannot but believe he had his questions in mind from the start. I am often tempted to forget that these are questions, and to think that he is suggesting answers, but there are no answers here; there are three fundamental questions, posed visually.

"On the right (Where do we come from?), we see the baby, and three young women - those who are closest to that eternal mystery. In the center, Gauguin meditates on what we are. Here are two women, talking about destiny (or so he described them), a man looking puzzled and half-aggressive, and in the middle, a youth plucking the fruit of experience. This has nothing to do, I feel sure, with the Garden of Eden; it is humanity's innocent and natural desire to live and to search for more life. A child eats the fruit, overlooked by the remote presence of an idol - emblem of our need for the spiritual. There are women (one mysteriously curled up into a shell), and there are animals with whom we share the world: a goat, a cat, and kittens. In the final section (Where are we going?), a beautiful young woman broods, and an old woman prepares to die. Her pallor and gray hair tell us so, but the message is underscored by the presence of a strange white bird. I once described it as "a mutated puffin," and I do not think I can do better. It is Gauguin's symbol of the afterlife, of the unknown (just as the dog, on the far right, is his symbol of himself).

"All this is set in a paradise of tropical beauty: the Tahiti of sunlight, freedom, and color that Gauguin left everything to find. A little river runs through the woods, and behind it is a great slash of brilliant blue sea, with the misty mountains of another island rising beyond Gauguin wanted to make it absolutely clear that this picture was his testament. He seems to have concocted a story that, being ill and unappreciated (that part was true enough), he determined on suicide - the great refusal. He wrote to a friend, describing his journey into the mountains with arsenic. Then he found himself still alive, and returned to paint more masterworks. It is sad that so great an artist felt he needed to manufacture a ploy to get people to appreciate his work. I wish he could see us now, looking with awe at this supreme painting.
"


Art Mirrors Physics Mirrors Art, by Stephen G. Brush


Arthur Miller addresses an important question: What was the connection, if any, between the simultaneous appearance of modern physics and modern art at the beginning of the 20th century? He has chosen to answer it by investigating in parallel biographies the pioneering works of the leaders of the two fields, Albert Einstein and Pablo Picasso. His brilliant book, Einstein, Picasso, offers the best explanation I have seen for the apparently independent discoveries of cubism and relativity as parts of a larger cultural transformation. He sees both as being focused on the nature of space and on the relation between perception and reality.

The suggestion that some connection exists between cubism and relativity, both of which appeared around 1905, is not new. But it has been made mostly by art critics who saw it as a simple causal connection: Einstein's theory influenced Picasso's painting. This idea failed for lack of plausible evidence. Miller sees the connection as being less direct: both Einstein and Picasso were influenced by the same European culture, in which speculations about four-dimensional geometry and practical problems of synchronizing clocks were widely discussed.

The French mathematician Henri Poincaré provided inspiration for both Einstein and Picasso. Einstein read Poincaré's Science and Hypothesis (French edition 1902, German translation 1904) and discussed it with his friends in Bern. He might also have read Poincaré's 1898 article on the measurement of time, in which the synchronization of clocks was discussed--a topic of professional interest to Einstein as a patent examiner. Picasso learned about Science and Hypothesis indirectly through Maurice Princet, an insurance actuary who explained the new geometry to Picasso and his friends in Paris. At that time there was considerable popular fascination with the idea of a fourth spatial dimension, thought by some to be the home of spirits, conceived by others as an "astral plane" where one can see all sides of an object at once. The British novelist H. G. Wells caused a sensation with his book The Time Machine (1895, French translation in a popular magazine 1898-99), where the fourth dimension was time, not space.


The Search for Extra Dimensions
OR Does Dzero Have Branes?


by Greg Landsberg
Theorists tell us that these extra spatial dimensions, if they exist, are curled up, or "compactified."In the example with the ant, we could imagine rolling the sheet of paper to form a cylinder. If the ant crawled in the direction of curvature, it would eventually come back to the point where it started--an example of a compactified dimension. If the ant crawled in a direction parallel to the length of the cylinder, it would never come back to the same point (assuming a cylinder so long so that the ant never reaches the edge)--an example of a "flat"dimension. According to superstring theory, we live in a universe where our three familiar dimensions of space are "flat,"but there are additional dimensions, curled up so tightly so they have an extremely small radius


Issues with Dimensionality

"Why must art be clinically “realistic?” This Cubist “revolt against perspective” seized the fourth dimension because it touched the third dimension from all possible perspectives. Simply put, Cubist art embraced the fourth dimension. Picasso's paintings are a splendid example, showing a clear rejection of three dimensional perspective, with women's faces viewed simultaneously from several angles. Instead of a single point-of-view, Picasso's paintings show multiple perspectives, as if they were painted by a being from the fourth dimension, able to see all perspectives simultaneously. As art historian Linda Henderson has written, “the fourth dimension and non-Euclidean geometry emerge as among the most important themes unifying much of modern art and theory."

And who could not forget Salvador Dali?

In geometry, the tesseract, or hypercube, is a regular convex polychoron with eight cubical cells. It can be thought of as a 4-dimensional analogue of the cube. Roughly speaking, the tesseract is to the cube as the cube is to the square.

Generalizations of the cube to dimensions greater than three are called hypercubes or measure polytopes. This article focuses on the 4D hypercube, the tesseract.



So it is interesting nonetheless isn't it that we would find pictures and artists who engaged themselves with seeing in ways that the art seems capable of, while less inclinations on the minds to grasp other opportunities had they had this vision of the artist? They of course, added their flavor as Salvador Dali did in the painting below this paragraph. It recognize the greater value of assigning dimensionality to thinking that leads us even further had we not gone through a revision of a kind to understand the graviton bulk perspective could have so much to do with the figures and realization of what dimensionality means.



So while such lengths had been lead to in what curvature parameters might do to our views of the cosmos, it wasn't to hard to envision the realistic valuation of graviton as group gatherings whose curvature indications change greatly on what we saw of the energy determinations.

Beyond forms

Probability of all events(fifth dimension) vvvvvvvvvvvvv Future-Time vvvvvvvvvvv | vvvvvvvvv | vvvvvvv | vvvvv | vvv | v | <<<<<<<<<<<<>>>>>>>>>>>now -------| flash fourth dimension with time | A | AAA | AAAAA | AAAAAAA | AAAAAAAAA | AAAAAAAAAAA | AAAA ___AAAAA | AAAAA/__/|AAAAA____Three dimension AAAAAA|__|/AAAAAA | AAAAAAAAAAAAAAAAAAA | | ___ | /__/ brane--------two dimension \ / .(U)1=5th dimension


I hope this helps explain. It certainly got me thinking, drawing it:)

Similarly a hypercube’s shadow cast in the third dimension becomes a cube within a cube and, if rotated in four dimensions, executes motions that would appear impossible to our three-dimensional brains.

So hyperdimenionsal geometry must have found itself describable, having understood that Euclid's postulate leads to the understanding of the fifth. A->B and the field becomes a interesting idea, not only from a number of directions(Inverse Square Law), dimensional understanding of a string, that leads from the fifth dimensional perspective is a point, with a energy value that describes for us the nature of curvature, when extended to a string length(also becomes the point looking at the end, a sphere from a point, and at the same time a cylinder in its length).

In looking at Einsteins fourth dimension of time, the idea of gravity makes its appearance in respect of dimension.

So how is it minds like ours could perceive a fifth dimensional perspective but to have been lead to it. It is not always about points( a discrete perspective)but of the distance in between those points. We have talked about Gauss here before and Riemann.

Who in Their Right Mind?


Penrose's Influence on Escher
During the later half of the 1950’s, Maurits Cornelius Escher received a letter from Lionel and Roger Penrose. This letter consisted of a report by the father and son team that focused on impossible figures. By this time, Escher had begun exploring impossible worlds. He had recently produced the lithograph Belvedere based on the “rib-cube,” an impossible cuboid named by Escher (Teuber 161). However, the letter by the Penroses, which would later appear in the British Journal of Psychology, enlightened Escher to two new impossible objects; the Penrose triangle and the Penrose stairs. With these figures, Escher went on to create further impossible worlds that break the laws of three-dimensional space, mystify one’s mind, and give a window to the artist heart.


Penrose and Quanglement


Order and Chaos, by Escher (lithograph, 1950)

No comments: